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SLAC and Physics Department, Stanford University,

Stanford, CA 94305 U.S.A.

E-mail: unsal@slac.stanford.edu

Abstract: A manifestly supersymmetric nonperturbative matrix regularization for a

twisted version of N = (8, 8) theory on a curved background (a two-sphere) is constructed.

Both continuum and the matrix regularization respect four exact scalar supersymmetries

under a twisted version of the supersymmetry algebra. We then discuss a succinct Q = 1

deformed matrix model regularization of N = 4 SYM in d = 4, which is equivalent to a

non-commutative A∗
4 orbifold lattice formulation. Motivated by recent progress in super-

symmetric lattices, we also propose a N = 1
4 supersymmetry preserving deformation of

N = 4 SYM theory on R
4. In this class of N = 1

4 theories, both the regularized and con-

tinuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of

the deformed matrix models with the lattice formulations, we give a very simple physical

argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra.

This argument disagrees with the recent claims of the link approach, for which we give a

new interpretation.

Keywords: Matrix Models, Extended Supersymmetry, Lattice Gauge Field Theories

ArXiv ePrint: 0809.321

c© SISSA 2009 doi:10.1088/1126-6708/2009/05/082

mailto:unsal@slac.stanford.edu
http://arxiv.org/abs/0809.321
http://dx.doi.org/10.1088/1126-6708/2009/05/082


J
H
E
P
0
5
(
2
0
0
9
)
0
8
2

Contents

1 Introduction 2

2 Target theories: Twisted N = (8, 8) SYM theories on S2 and T 2 5

2.1 A-twist 5

2.2 B-twist 7

3 Matrix regularization of target theories on S2 and T 2 7

3.1 The Type IIB matrix model in Q = 4 multiplets 7

3.2 Mass deformed matrix model and symmetries 8

3.3 Noncommutative moduli space 8

3.4 Classical spectrum and ”onion ring” Brillouin zone 10

3.5 A-twist and mass deformation 11

3.6 B-twist and β-flux deformation and target theory on T 2 12

3.7 Comments 14

4 A new class of supersymmetric gauge theories: N = 1
4

SYM 15

4.1 Twist the algebra, deform the action: From N = 4 to N = 1
4 on R

4 15

5 Matrix model regularization for N = 4 SYM in d = 4 19

5.0.1 Commutative versus non-commutative theories and supersymmetry 21

5.1 Matrix model regularization for N = 1
4 SYM in d = 4 22

6 Link approach and global supersymmetry 22

6.1 Reinterpreting the link(2) constructions: Why are there intriguing? 24

6.2 Representation theory of link(2) lattices and Dirac-Kähler fermions 26

6.2.1 A Q = 0 link(2) lattice and twisted dihedral group 26

6.2.2 Representation theory for the twisted full octahedral group 32

6.3 A Q = 0 deformed matrix model for link(2) formulations 33

7 Supersymmetric lattice (SL)-twists and topological field theories 36

7.1 Three twists of N = 4 SYM in d = 4: Why SL-twist is special? 37

8 Twisting in QCD and staggered fermions 38

8.1 Staggered fermions as twisted complex representation fermions 38

8.2 Reduced staggered fermions as twisted real representation fermions 40

9 Discussion 41

– 1 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
2

1 Introduction

This paper has three goals: One is to construct a manifestly supersymmetric matrix (non-

lattice) regularization for certain twisted supersymmetric gauge theories formulated on

curved backgrounds, such as S2 or S2 × R. The other purpose is to discuss the global

supersymmetry in the context of twisted supersymmetry, deformed (supersymmetric) ma-

trix models, supersymmetric lattices, and supersymmetry in curved spaces. We hope to

provide a sharp meaning to the notion of exact lattice supersymmetry by doing this. Our

last goal is to introduce a simpler deformed matrix model regularization for N = 4 super-

symmetric Yang-Mills (SYM) theory in d = 4 dimensions and discuss its relation to the

supersymmetric lattice regularization.

It is well-known that global scalar supersymmetry may be carried to curved spaces

if a twisted version of the supersymmetry algebra is used [1]. On a flat space, twisting

is a procedure which embeds a new Lorentz group into the product of the usual Lorentz

and a global symmetry group. Usually, this is done in such a way that some of the

spinors of the Lorentz symmetry turns into spin-0 scalars under the new twisted Lorentz

group, see for example [2]. The twisted theories can be carried into curved backgrounds

while preserving the (nilpotent) scalar supersymmetry generators, or the scalar subalgebra.

A subclass of twisted theories which admits scalar supercharge may also be defined on

lattices without upsetting the scalar subalgebra. (Not all twisted theories with a nilpotent

supercharge admit a lattice regularization, see the discussion in section 7.1) We refer to

this subclass as supersymmetric lattice twists or SL-twists for short. The existence of

a nilpotent scalar supersymmetry Q2 = 0 is sufficient to formulate a topologically twisted

version of supersymmetric gauge theories on curved spaces. The same criterion, however,

is necessary but not sufficient to construct a physical (non-topological) supersymmetric

theory on a lattice.

Motivated by these general observations, we first construct a deformed supersymmet-

ric matrix model regularization for a twisted theory on curved background, a two-sphere

S2. The remarkable property of this construction is that both the regularized theory and

continuum theory respect the same set of scalar supersymmetries. Our target theory is a

twisted version (which we refer as A-twist) of N = (8, 8) SYM theory with gauge group

U(k) residing on a two-sphere, S2. Both the deformed matrix model and the A-twist has

Q = 4 scalar supersymmetries and these are the exact supersymmetries of the target theory

on S2, with no enhancement of supersymmetry in the continuum limit.

Next, we study a β (flux) deformation of the Type IIB matrix model.1 The continuum

limit of this model is N = (8, 8) SYM theory on flat torus, T 2. The regularized matrix

model has Q = 4 scalar supersymmetries, which are the scalar set of supersymmetries

of a B-twist of N = (8, 8) target theory. In the continuum limit, the supersymmetry

enhances to the full sixteen supersymmetries. A more interesting case is a certain two-flux

1This model is essentially the Leigh-Strassler deformation of N = 4 SYM theory in d = 4 reduced to a

matrix model [3]. The β-deformed model, without any orbifold projections, serves as a non-perturbative

regulator for the target N = (8, 8) theory. The model was studied in [4, 5], however, the unnecessity of

orbifolding and the emergence of the base space from the zero-action configurations was recognized later [6].

– 2 –
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deformation of the matrix model. This deformation preserves only Q = 1 out of Q = 16

supersymmetries, and generates the N = 4 SYM on T 4 in its classical continuum limit. We

will benefit from the relation of the deformed matrix models and supersymmetric lattices

in the discussion of the exact global supersymmetries of various lattice formulations.

In recent years, there has been significant progress on the non-perturbative lattice

construction for the supersymmetric gauge theories. Various approaches are used to con-

struct supersymmetric lattices with exact supersymmetry at finite lattice spacing.2 One

such approach is the orbifold constructions which preserve a nilpotent subset of supersym-

metries [10–12]. Also see [13–18] for related work. Catterall [19–22] and Sugino [23–27],

starting with a “topologically” twisted form of the target theories, successfully preserved

a scalar (nilpotent) subset of supersymmetries on the lattice. The relation between these

three formulations was not clear at first.

Motivated by the unconventional aspects of supersymmetric orbifold lattices, such as

scalars of the target theories residing on the links (rather than on sites) and fermions fill-

ing single-valued integer spin representations (rather than being double-valued spinors),

ref. [28] showed that all the supersymmetric orbifold lattices do indeed produce a twisted

version of the supersymmetric gauge theories in their continuum. The main point of ref. [28]

is depicted in figure 1. This observation, merged the “topological” approach and super-

symmetric orbifold lattices at the conceptual level. Soon after, Catterall [29] showed that,

the use of the correct twist together with the geometrical discretization rules produce the

supersymmetric lattice actions for the orbifold lattices. More recent important work by

Takimi [30], and Damgaard et.al. [31–33] demonstrated the equivalence of these lattice

formulations even at finite lattice spacing. ref. [34] also provided a full classification of the

supersymmetric lattices that can be obtained by orbifolding and argued for uniqueness in

certain cases.

There is one other approach to lattice supersymmetry which aims to preserve all

the supersymmetries on the lattice, not only the nil-potent scalar supercharges. This

approach is also motivated by the twisted form of the supersymmetry algebra and Dirac-

Kähler structure of the fermions.3 It is referred as link approach in D’Adda et.al. [37–

40]. The claim of preserving the whole set of supersymmetries is debated in ref. [41,

42], with a negative conclusion. On the other hand, the lattice structures on the link

approach can be obtained by orbifold projections and in fact, these two approaches are also

equivalent as shown in [32]. However, some lattices of link approach constructions, which

are claimed to possess all the supersymmetries, can be obtained by orbifold projections

which preserve either no supersymmetry, or just few scalar supercharges according to the

criteria of [10, 43]. In our opinion, ref. [32] answered this question satisfactorily by showing

that whatever supersymmetry remains intact under the orbifold projection is indeed the

exact supersymmetry on the lattice. However, [44, 45] asserted the consistency of the

link approach despite ref. [32, 41, 42]. Here, we will give an independent and simpler

argument which shows that the amount of global supersymmetries preserved in lattice

2Alternatives formulations in which supersymmetry only emerges in the continuum are studied in, for

example, [7–9]. Also see the interpretation in section 6.
3An earlier proposal of using Dirac-Kähler fermions to supersymmetric lattices appeared in [36].
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Figure 1. Twisting is one of the the main ideas in the formulation of i) supersymmetric lattices

for physical SYM theories, ii) the staggered fermion formulation of lattice QCD, and iii) in the

formulation of topological versions of SYM theories on curved spaces. [In literature, twisting is

sometimes referred as “topological twisting” due to its applications to topological theories. This

is a misnomer.] In neither of the first two cases (which is the main interest of this paper), the

lattice point group symmetry may be considered as a sub-group of Lorentz symmetry. It is in

fact a subgroup of the diagonal sum of the Lorentz and Gglobal, referred as twisted Lorentz group

SO(4)′. Gglobal is an R-symmetry in the case of supersymmetric theories and is a flavor symmetry

in the case of QCD. In both lattice formulations, the fermions are in single-valued, integer spin

representation of SO(4)′ and its discrete subgroups. Of course, by undoing the twist, we recover

usual fermions with double-valued spinor representation under SO(4). The figure is adapted from

ref. [35].

regularization of the extended supersymmetric gauge theories is always the subset of scalar

supersymmetries, and not the whole set of supersymmetry.

The merit of our argument is in its conceptual simplicity. We will benefit from the

(supersymmetric) deformed matrix models. Recall that in d = 4 dimensions, the β [3] or

a mass deformation of superpotential reduce the N = 4 SYM down to N = 1. There

is no ambiguity in the amount of global supersymmetry here, because the other twelve

supersymmetries are explicitly spoiled by the deformation. We will consider similar Q =

1 [6] and Q = 4 supersymmetry preserving deformation of Q = 16 Type IIB model. The

equivalence of the deformed supersymmetric matrix model to supersymmetric lattices is

explicitly given in [6] and is summarized in section 5. The reason that I choose to go

through this detour is to avoid the technical discussion of the modified Leibniz rule or its

spin-offs such as “link supercharge” altogether. Our argument is very simple. Since the

β-deformed matrix model is equivalent to the lattice regularization, the existence of the full

set of supersymmetry in the lattice formulation would have implied that the β-deformation

does not reduce the amount of supersymmetry, which is a contradiction. This argument

also leads us to the conclusion that exact lattice supersymmetry must be a subset of the

scalar supersymmetry subalgebra.

The question of whether we can preserve the whole set of supersymmetries of a contin-

uum gauge theory in its lattice (or matrix) regularization leads us to a surprising reverse-

engineering. There exist deformations of N = 4 SYM theory on R
4 or T 4 which preserve

only N = 1
4 (or Q = 1) supersymmetry. The idea is to deform the twisted action such

– 4 –
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that only scalar super-charge remains as a global supersymmetry. Although these theories

looks like a BRST-like gauge fixing of an underlying gauge invariant theory, I was unable

to construct them this way. A physical interpretation for the N = 1
4 theories on flat space

is currently lacking, although their non-perturbative lattice and matrix regularizations ex-

ist, and are given here. The generalization of these twisted-deformed actions to other

dimensions is obvious.

Finally, I discuss twisting in a more general context (outside supersymmetry or topo-

logical twisting) in section 8 where I rephrase the staggered and reduced staggered fermions

of lattice QCD as particularly elegant applications of the twisting idea, see figure 1. In

these cases, the R-symmetry is replaced by the flavor symmetry of QCD.

2 Target theories: Twisted N = (8, 8) SYM theories on S2 and T 2

Our two dimensional target theories are the twisted versions of the N = (8, 8) (or Q = 16)

supersymmetric Yang-Mills theory formulated on a two-sphere, S2 and on a two-torus T 2.

The N = (8, 8) theory on R
2 can be obtained as the dimensional reduction of the N = 1

gauge theory on R
10 down to R

2. The ten dimensional theory possess an SO(10) Euclidean

Lorentz rotation group. Upon reduction, SO(10) group decompose into

SO(10) −→
(

SO(2)

SO(8)

)
(2.1)

where SO(2) is the two dimensional Lorentz symmetry acting on R
2 and SO(8)R is the

internal R-symmetry group.

We will consider a compactification of the Q = 16 SYM theory on two-sphere, S2.

A straight forward compactification of a supersymmetric theory on a curved manifold

breaks all the supersymmetries, since there are no covariantly constant spinors on curved

spaces. This can be evaded by using a twisting procedure which turns some of the (spinor)

supersymmetries into scalars under a new Lorentz group. The scalar supersymmetries are

globally defined even when the underlying manifold is curved. The other supersymmetries

of the flat-spacey theory are no longer symmetries in the global sense on S2.

The fermions and supercharges transform under the spin group of SO(2) × SO(8) as(
1
2 ,8
)
⊕
(
−1

2 ,8
′) and the scalars and gauge bosons transform as (1,8v) and (±1,1).4

Below, we wish to examine two twists of the theory that will accommodate four

scalar supersymmetries.

2.1 A-twist

The main idea of twisting is to embed a new rotation group into the product of Lorentz and

R-symmetry groups in such a way that a subset of supercharges transform as scalars. In our

particular case, we find an embedding of SO(2)′E into SO(2)E ×SO(8)R. Let us decompose

SO(8)R → SO(4) × SO(4) ∼ SU(2)A × SU(2)B × SU(2)L × SU(2)R. Therefore, under

SO(2)E × [SU(2)]4 (2.2)

4Under the SO(2), the gauge boson is in two dimensional vector representation. Under Spin(2)E =

U(1)E , it splits into two one dimensional representations.

– 5 –
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the fermions and bosons branch as

scalars : (0,2,2,1,1) ⊕ (0,1,1,2,2) gauge bosons : (±1,1,1,1,1)

fermions :

(
1

2
,2,1,2,1

)
⊕
(
−1

2
,2,1,1,2

)
⊕
(

1

2
,1,2,2,1

)
⊕
(
−1

2
,1,2,1,2

)
(2.3)

One can use, the U(1)A subgroup of the SU(2)A to construct a twisted rotation group

U(1)′E = Diag(U(1)E × U(1)A) . (2.4)

and declare U(1)′E ∼ SO(2)′E as the new Lorentz group. This is the procedure of twist-

ing. Since the [SU(2)]3 subgroup of the full R-symmetry remains intact, it will be an

R-symmetry group of the twisted version. Under U(1)′E × [SU(2)]3, the transformation

properties of fields are

fermions −→ (1,1,2,1) ⊕ (0,1,2,1) ⊕ (−1,1,1,2) ⊕ (0,1,1,2)

⊕
(

1

2
,2,2,1

)
⊕
(
−1

2
,2,1,2

)

scalars −→
(
±1

2
,2,1,1

)
⊕ (0,1,2,2) gauge bosons −→ (±1,1,1,1) (2.5)

Four of the fermionic degrees of freedom are neutral under the twisted Lorentz group

U(1)′E , and therefore they transform as scalars. The same argument is also true for the

supercharges, and consequently the sixteen supercharges of the original theory decompose

precisely as fermions in eq. (2.5). Four of them are scalars

Scalar supercharges :(0,1,2,1) ⊕ (0,1,1,2) (2.6)

and they can be defined globally on curved two-manifolds.

There is a natural supermultiplet structure that can be read-off from the transforma-

tion properties of the fields and supercharges:

SO(2)′E transformation Bosons Fermions

U(1)′E scalars : (0,1,2,2) (0,1,2,1) ⊕ (0,1,1,2)

U(1)′E spinors : (±1
2 ,2,1,1), (1

2 ,2,2,1), (−1
2 ,2,1,2)

U(1)′E vectors : (±1,1,1,1), (1,1,2,1), (−1,1,1,2)

(2.7)

The supermultiplets transform as their lowest components and are respectively scalars,

spinors and vectors under U(1)′E : Unlike the supersymmetric lattice twists which associate

all the degrees of freedom with integer valued representations of the twisted rotation group,

this twist has double-valued spinor representations as well.

The A-twist of the gauge theory on S2 arises naturally out of a Q = 4 supersymmetry

preserving mass deformation of Q = 16 type IIB matrix model, as it will be discussed in

section 3.4.

– 6 –
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2.2 B-twist

The supersymmetric lattice twists have no half-integer representation under the twisted

group. We can build such a twist starting with eq. (2.5) and by taking the diagonal sum

of the U(1)′E with the U(1)B subgroup of SU(2)B :

U(1)′′E = Diag(U(1)′E × U(1)B) = Diag(U(1)E × U(1)A × U(1)B) (2.8)

This amounts to defining a charge Q′′
E as

Q′′
E = QE +QA +QB (2.9)

under SO(2)′′E ∼ U(1)′′E . Under U(1)′′E × SU(2)L × SU(2)R, we have

scalars −→ (±1,1,1) ⊕ 2(0,1,1) ⊕ (0,2,2) gauge bosons −→ (±1,1,1)

fermions −→ 2 × [(1,2,1) ⊕ (0,2,1) ⊕ (−1,1,2) ⊕ (0,1,2)] (2.10)

This twist is the one which emerges naturally from the A∗
2 hexagonal lattice construc-

tion [28]. In section 3.6 we will see that the B-twist also appears in a Q = 4 supersymmetry

preserving β-flux deformation of type IIB matrix model.

3 Matrix regularization of target theories on S2 and T 2

In this section, we present a manifestly supersymmetric deformed matrix model regulariza-

tion for the twisted version of supersymmetric gauge theory on S2 and T 2. The two types

of matrix regularizations have manifest Q = 4 supersymmetries, and in their continuum,

correspond to A-twist and B-twist, respectively. On S2, there is no enhancement of the

supersymmetry in the continuum. For T 2, as in the supersymmetric lattices, generically

a nilpotent scalar subset of supersymmetry is preserved exactly on the regularized theory,

and the others emerge accidentally in the continuum.

3.1 The Type IIB matrix model in Q = 4 multiplets

To describe our regularization scheme, it is convenient to express the Q = 16 Type IIB

matrix theory in a manifestly Q = 4 supersymmetric formalism. This is most easily done

by writing the N = 4 SYM in d = 4 dimensions using N = 1 superfields followed by

dimensional reduction down to d = 0 dimension. The matrix model action is

S =
1

g2
Tr

[∫
d2θ d2θ Zme

2VZme−2V +
1

4

∫
d2θ WαWα + a.h. (3.1)

+

√
2

3!
ǫmnp

∫
d2θZm[Zn,Zp] + a.h.

]

Here, Zm, Zm, V and Wα are the dimensional reduction of familiar N = 1 chiral, anti-

chiral vector and field-strength supermultiplets on R
4 down to d = 0 dimension.

The type IIB matrix model possesses a global SO(10) symmetry and sixteen super-

symmetries. The Q = 4 superfield language only makes the

SU(3) × SU(2) × SU(2) × U(1) (3.2)

– 7 –
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subgroup manifest. The 10 bosons and 16 fermions of SO(10) decompose under eq. (3.2) as

10 −→ zm ⊕ zm ⊕ ṽ ∼ (3,1,1) 2
3
⊕ (3,1,1)− 2

3
⊕ (1,2,2)0 . (3.3)

16 −→ ψm ⊕ ψm ⊕ λ⊕ λ ∼ (3,2,1)− 1
3
⊕ (3,1,2) 1

3
⊕ (1,2,1)1 ⊕ (1,1,2)−1 (3.4)

Next, we construct a Q = 4 supersymmetry preserving mass deformation of the matrix

model eq. (3.1). The deformed matrix model, around a particular background solution,

produces a higher dimensional twisted supersymmetric gauge field theory.

3.2 Mass deformed matrix model and symmetries

The Q = 4 supersymmetry preserving (equal) mass deformation of the Q = 16 supercharge

theory is the dimensional reduction of the N = 1∗ SYM from d = 4 down to d = 0

dimension. The N = 1∗ deformation of the N = 4 was studied in ref. [46]. The deformed

“superpotential” is

W (Zm) =

√
2

3!
ǫmnp Zm[ Zn,Zp ] +

1√
2
m

3∑

p=1

(Zp)
2 (3.5)

or equivalently, the deformed action is

Sdeformed = S +
1√
2
m

∫
d2θ

3∑

p=1

(Zp)
2 + a.h. (3.6)

The mass deformation preserves the SO(3) ∼= SU(2) subgroup of SU(3) × U(1) R-

symmetry. Since the mass parameter is dimensionful, the U(1) symmetry is explicitly

broken. The three dimensional representations of SU(3) split as 3(3) → 2⊕1 under SU(2).

The SO(4) ≃ SU(2) × SU(2) R-symmetry, just like Q = 4 supersymmetry, is not harmed.

This means, the mass deformed matrix model has a manifest [SU(2)]3 symmetry. The ten

bosons and sixteen fermions of the matrix model, under [SU(2)]3 symmetry decompose as

10 −→ 2(2,1,1) ⊕ 2(1,1,1) ⊕ (1,2,2). (3.7)

16 −→ (2,2,1) ⊕ (1,2,1) ⊕ (2,1,2) ⊕ (1,1,2) ⊕ (1,2,1) ⊕ (1,1,2) (3.8)

As we have seen in section 2, the [SU(2)]3 symmetry is the R-symmetry group of the

A-twist shown in eq. (2.5). The U(1)′E twisted rotation symmetry is not a symmetry of

the matrix model. It emerges in the continuum in the same way as the Lorentz symmetry

emerges in the continuum limit of a lattice gauge theory.

3.3 Noncommutative moduli space

The zero action configurations of the deformed matrix theory, also called the noncommu-

tative moduli space, is the locus of the bosonic action:

Sbosonic|M = 0 (3.9)

– 8 –
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This implies the vanishing of F and d terms and all other bosonic positive definite terms

in the action:

Fm =
∂W (zm)

∂zm
= 0, d = −i

3∑

m=1

[zm, z
m] = 0, [vµ, vν ] = 0, [vµ, z

m] = 0 (3.10)

where m = 1, . . . 3 and µ = 1, . . . 4. The F -term conditions are

[zm, zn] = −mǫmnpz
p (3.11)

The anti-hermitian ℑ(zm) satisfies the commutation relations of the SU(2) algebra. Since

the F -term conditions are not homogeneous under z → cz where c ∈ C, the mass deformed

theory (in the chiral multiplet sector) does not possess a moduli space, rather it has a

discrete isolated set of classical minima. The solutions of the F -terms also satisfy the d-

term condition. The other conditions in eq. (3.10) put certain restrictions on the form of

vµ, but not zm.

The eq. (3.11) has both reducible and irreducible set of solutions [46]. For example,

an irreducible embedding of SU(2) algebra into U(N) yield a target theory with U(1)

gauge group. In order to construct the continuum U(k) gauge theory on S2, it is more

convenient to start with a U(Nk) matrix model and expand the fluctuation around the

rank-N background solution of eq. (3.11). Formally, we have

U(Nk) −→ U(N)︸ ︷︷ ︸
S2 background

⊗ U(k)︸ ︷︷ ︸
fluctuations

(3.12)

The background solution for eq. (3.11) can explicitly be written as

zp = imJp, where [Jm, Jn] = iǫmnpJ
p (3.13)

where Jp are generators of SU(2) algebra. The irreducible embedding of SU(2) into U(N)

is an angular momentum

j ≡ N − 1

2
(3.14)

representation. The eigenvalues of each ℑ(zp) ranges in the interval m
[
−N−1

2 , . . . , N−1
2

]
.

However, these matrices do not commute with each other, and consequently, the moduli

space is noncommutative. The eigenvalues lies on the surface of a sphere (which is often

referred as “a fuzzy sphere”) in moduli space:

3∑

p=1

(zp)2 = m2
3∑

p=1

(Jp)2 = m2 j(j + 1) 1N =
m2(N2 − 1)

4
1N (3.15)

where the last equality follows from eq. (3.14). The radius of this fuzzy sphere Rfuzzy in

the moduli space is the UV cut-off (ΛUV) of the matrix regularization

Rfuzzy =
mN

2
= ΛUV, (3.16)
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up to lower order terms in 1/N . In the continuum limit, the size of this fuzzy sphere

diverges in an analogous manner with the Brillouin zone of a lattice gauge theory, whereas

the base space of our target theory has a fixed size determined by m−1 , the IR scale.

In what follows, the non-commuting zero action configurations Jp, p = 1, 2, 3 play two

roles. They generate the S2 background and the “hopping” (kinetic) terms in the target

U(k) theory.

3.4 Classical spectrum and ”onion ring” Brillouin zone

In order to analyze the quadratic fluctuations of the action, we expand the superfields

around the zero action configuration:

Zp = 〈Zp〉 + Z̃p = im Jp ⊗ 1k + Z̃p (3.17)

where Z̃p denotes the fluctuations. We expand generic matrix field X in our action as

X =
∑

l,m

Ylm ⊗ Xlm (3.18)

where Ylm are N×N matrices (given below), associated with the angular momentum mode

l,m. The fields Xlm is the U(k) algebra valued field associated with the momentum l,m

in a spherical decomposition.

In eq. (3.17), the fluctuation matrix Z̃ is a GL(Nk,C) valued matrix. The zero ac-

tion configuration matrices can be used to form a complete orthonormal matrix basis for

GL(N,C). Since GL(N,C) is N2 complex dimensional vector space, we need N2 basis

matrices. A complete orthonormal basis is generated by using the three Jp matrices, and

by just mimicking the spherical harmonics, Ylm. For example, for GL(3,C), a complete

orthogonal basis B(S2) composed of nine three by three matrices are given by

B(S2) ≡
{

1, Jz , J±, J2
±, JzJ±, (3J2

z − 1)
}
∼
{
Y00, Y10, Y1,±1, Y2,±2, Y2,±1, Y2,0

}
(3.19)

The classical spectrum of the fermions and bosons can be found by studying the fluc-

tuations around the background. This is a straightforward calculation along the lines of

analysis of [47] and [6]. In particular, the details of the classical analysis are literally iden-

tical to the deconstruction of the Maldacena-Núñez compactification on R
4 × S2, starting

with N = 1∗ SYM theory in d = 4 dimensions, and are discussed thoroughly in [47].

Hence, this classical analysis will not be repeated here. The interaction terms as well work

precisely as in [6] and [47]. This means, at the classical level, our deformed matrix model

produces the target theory on S2 correctly. Below, we discuss some interesting physical

aspects of the matrix regularizations.

The spectrum of Grassmann even and odd modes of the matrix model, their level de-
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generacy and their transformation properties under the twisted rotation group are given by

Free Spectrum Grassmann odd Grassmann even SO(2)′E

M2
l,m = m2 l(l + 1), l = 0, 1, 2, . . . 4(2l + 1), 4(2l + 1) scalar

M2
l′,m′ = m2 (l′ + 1

2)2, l′ = 1
2 ,

3
2 ,

5
2 , . . . , 8(2l′ + 1) 4(2l′ + 1) spinor

M2
l,m = m2 l(l + 1), l = 1, 2, 3, . . . , 4(2l + 1) 2(2l + 1) vector

. (3.20)

The three types of the spectrum can be naturally associated with the truncated spectrum

of spin-0, spin-1
2 and spin-1 fields on S2. The spectral degeneracy of the Grassmann even

and odd spin-0, spin-1
2 and spin-1 modes is a consequence of the exact supersymmetry of

the deformed matrix model.

Brillouin zone. The spectrum shown in eq. (3.20) also provides a notion of the Brillouin

zone for the matrix regularization. In the penultimate line of eq. (3.20), define l = (l′ +
1
2 ), l = 1, 2, 3 . . .. The Brillouin zone is composed of circular shells, like the onion rings and

lth shell accommodates (2l+1) states. The cut-off is determined by the size of the matrices

in the matrix regularization, N , and jmax = N−1
2 and the UV cut-off is ΛUV = mN

2 . As

in the lattice regularization, wavelengths below the length scale Λ−1
UV are not present in

the matrix regularized theory. In the continuum limit, we take the cut-off ΛUV to infinity

while keeping m fixed (the inverse size of the two-sphere) and taking N → ∞. In the

moduli space, this corresponds to taking radius of the fuzzy sphere to infinity, similar to

the deconstruction and supersymmetric lattices where the continuum limit is a trajectory

out to infinity in the moduli space.

3.5 A-twist and mass deformation

Fermions. Clearly, the spectrum of the Grassmann odd variables shown in eq. (3.20) is

not what one would naively expect from the eigenvalue spectrum of a Dirac operator on

a two-sphere S2. Instead, it is a mix of truncated spectrum of spin-0, spin-1
2 and spin-1

fields on a sphere. In eq. (3.20), another bizarre feature at first glance is the appearance of

fermion zero modes. However, it is well known that, the eigenvalue spectrum of the Dirac

operator on S2, (and in general in any positively curved background) has a gap due to

spin connection.5

Of course, although the fermionic spectrum sounds incorrect for a naive (no supersym-

metry preserving) compactification of the N = (8, 8) theory on S2, it is on the other hand

precisely what one expects from the compactification of the twisted formulation discussed

5 More generally, the Dirac operator on a curved background is given by /D = γae µ
a Dµ where Dµ =

∂µ + ωµ is the general covariant derivative and ωµ is the spin connection. µ is the global coordinate index

and a is local frame index. The spin connection is ωµ = ω ab
µ Σab where Σab are generators of local rotations

(acting in spinor representation). It is a simple exercise to show that the eigenvalue spectrum of the Dirac

operators has a gap.
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in sectioon 2.1. Due to twisting, we have global supersymmetry on S2, the spectrum of

fermions has four fermionic zero modes, which is in exact correspondences with the presence

of four exact supersymmetries of the matrix model eq. (3.6).

Bosons. The spectrum of bosons coincides with the truncation of the A-twist eq. (2.5) of

the supersymmetric theory, but not with the naive untwisted compactification. Of course,

this is consistently tied with what we have presented for fermions in terms of twisting.6

3.6 B-twist and β-flux deformation and target theory on T 2

The β-flux deformation of the superpotential is a one-parameter family of deformation

given by

W (Zm)β =
√

2Z1
(
e−iβ/2Z2Z3 − e+iβ/2Z3Z2

)
(3.21)

or equivalently,

W (Zm)β =

√
2

3!
ǫmnp Zm

(
e−iΦnp/2ZnZp − e+iΦnp/2ZpZn

)
(3.22)

with obvious identifications. The deformation is respectful to SU(2)L×SU(2)R R-symmetry

of the matrix model, whereas it only preserves U(1)3 subgroup of the SU(3) × U(1) sym-

metry. Recall from section 2.2 that the SU(2)L × SU(2)R is also the non-abelian global

R-symmetry of the B-twist .

The β flux-deformation does not introduce a dimensionful parameter, unlike the case

with mass deformation. However, the β-flux deformed theory possesses a degenerate mani-

fold of the ground states, a moduli space, where the distance from the origin of the moduli

space has an interpretation as an UV cut-off, similar to the supersymmetric orbifold lattices.

The zero action configuration of the β-flux deformed theory is the solution of eq. (3.10).

Given the superpotential eq. (3.21), the F -term constraints reduce to a slight generalization

of the ’t Hooft algebra

z1z2 = eiβz2z1, z2z3 = eiβz3z2, z3z1 = eiβz1z3 (3.23)

Let us consider a U(Nk) deformed matrix theory. Our goal is, similar to the mass deformed

matrix model, to generate a base space and gauge theory residing on it:

U(Nk) −→ U(N)︸ ︷︷ ︸
T 2 background

⊗ U(k)︸ ︷︷ ︸
gauge fluctuations

(3.24)

Such constructions at the classical level are standard, for example, for the classical

relation between non-supersymmetric TEK model regularization to the non-commutative

Yang-Mills theory, see the refs. [5, 50, 51] and references therein. The non-commutative

Yang-Mills theory also possess the commutative limit for appropriate choice of deformation

6 The discussion of this section can be easily generalized to target theories on R × S2. For a very

interesting proposal about N = 4 SYM theory on R× S3, see [48]. Also see [49] for a classification of mass

deformations.
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parameters. The construction of the square lattices on T 2 in matrix regularization is well-

known. Below, we additionally point out how to construct the hexagonal A∗
2 lattice without

getting into details. Of course, the main point of this section is that β-flux deformation

produce the B-twist in its continuum limit.

Let us choose the deformation matrix as

Φnp =




+2π
N −2π

N

−2π
N +2π

N

+2π
N −2π

N




np

(3.25)

The solutions of the ’t Hooft algebra is given in terms of clock and shift matrices:

(P )kl = ei2πk/Nδkl, (Q)kl = δk+1,l, k, l = 1, . . . N (3.26)

We background matrices are

〈z1〉 = c1P ⊗ 1k, 〈z2〉 = c2Q⊗ 1k 〈z3〉 = c3(PQ)−1 ⊗ 1k (3.27)

where ci ∈ C are complex modulus parameters which are essential in establishing a con-

tinuum limit. The presence of these moduli fields is expected. If eq. (3.23) has a solution,

due to its homogeneity under zm → αzm, it has a continuum of solutions (unlike the mass

deformed theory eq. (3.5)). The conditions [vµ, z
m] = 0 restrict vµ to a matrix proportional

to identity. Since vµ matrices commute with both P and Q, they must be proportional

to the Casimir of the ’t Hooft algebra, which is identity. With this configuration of the

matrices, the d-term constraint and [vµ, vν ] = 0 are automatically satisfied. Consequently,

classical moduli space is (for k = 1)

M = R
4 × C

3 (3.28)

The existence of C
3 along which one can move to infinity is sufficient to produce a continuum

N = (8, 8) theory.

We can map the matrix model to two types of lattices. The analog of the basis for

S2 eq. (3.19) can now be constructed by using the clock and shift matrices. The basis

matrices are J(p1,p2) ∼ Qp1P p2, pi = 1, . . . N , where pi gains interpretation as momentum

in a two dimensional Brillouin zone. In particular, expressing the fluctuations of the matrix

fields as Z̃ =
∑

p Jp⊗ Z̃p produces the Q = 4 supersymmetry preserving non-commutative

lattice regularization for the N = (8, 8) target theory. As usual, the square and A∗
2 lattices

emerges by expanding around the following points in the moduli space

Square lattice : c1 = c2 =
1

a
, c3 = 0, (3.29)

Hexagonal A∗
2 lattice : cm =

1

a
, m = 1, 2, 3 (3.30)

The details of this type of calculations can be found in [6].
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3.7 Comments

There are a few points that we wish to emphasize in this construction:

1. The matrix regularization given in eq. (3.21) has only Q = 4 exact supersymmetries.

These are the scalar supersymmetries of the B-twist version of the target theory.

Since the target theory is defined on a flat T 2 (or R
2 in its infinite volume limit),

the other 12 (non-scalar) supersymmetries arises accidentally in the continuum. Note

that as it is in d = 4 dimensional β-deformation (the Leigh-Strassler deformation [3]),

the remaining twelve supersymmetries are explicitly broken, and are not symmetries

of the matrix model in any sense.

2. In matrix model approach, there is no orbifold projection. The N2k2 total number

of microscopic degrees of freedom of the U(Nk) matrix model transmutes into a non-

commutative U(k) lattice gauge theory with N2 sites. In the orbifold projection, in

order to generate a two dimensional regular lattice, one starts with U(N2k) matrix

model, which has N4k2 degrees of freedom and projects out by a (ZN )2 discrete sym-

metry:

U(N2k) −→︸︷︷︸
orbifolding

[U(k)]N
2

(3.31)

In the matrix regularization, one keeps all the degrees of freedom of the matrix model

and in the latter, one removes most degrees of freedom by projections. Orbifolding

results in an ordinary SYM theory on a commutative (regular) lattice with nearest

neighbor interactions. The matrix regularization has both commutative and non-

commutative continuum limits.

3. The β-deformation of the d = 0 matrix model can only produce the target theories in

even dimensions, d = 2, 4. In orbifold constructions, there is no distinction between

even and odd dimensional target theories.7

4. It should be noted that our analysis of the fluctuations on both (S2 and T 2) back-

grounds is classical. As explained, the mass deformed action has many discrete,

isolated minima corresponding to different background configuration of the matrix

degrees of freedom and the β deformed theory has a classical moduli space. As we

have argued, not all these background zero action configurations lead to a regularized

field theory on S2 and T 2. In our classical analysis, we choose to expand around a

particular minima eq. (3.17). It is in principle possible that the statistical fluctua-

tions can take the equilibrium state we expand around to another one which does

not have “an emergent space” interpretation and hence spoil the whole picture.

Indeed, refs. [50, 51] recently showed a non-perturbative instability in related bosonic

matrix models. The TEK model, which produces the d = 4 dimensional non-commutative

YM theory in its classical continuum limit, fails to be stable non-perturbatively. Ref. [50]

7 If one starts with matrix quantum mechanics with d = 0 + 1, one can only produce Hamiltonian

formulations in d = 2 + 1 dimensions.
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also shows that in supersymmetric matrix models, the non-commutative background is

stable (even if supersymmetry is broken softly). In this sense, the manifestly supersym-

metric matrix model regularizations of the supersymmetric theories should be producing a

stable background. According to the criteria of ref. [50], both of our supersymmetric target

theories as well as the supersymmetric deformed matrix models of refs. [4–6] are safe. For

the detailed discussion, we refer the reader to ref. [50].

4 A new class of supersymmetric gauge theories: N = 1

4
SYM

In this section, motivated by the recent advances in supersymmetric lattice constructions

and using ideas from the topological field theories, we define a new class of supersymmetric

theories with N = 1
4 supersymmetry on R

4. This construction will be used to address

certain questions about exact lattice supersymmetry, although it may have a wider class

of applications.

The approach described in what follows can be applied to extended supersymmetric

gauge theories in various dimensions. We will describe it in d = 4 dimensions, starting

with N = 4 SYM theory.

The proposal is as follows: First, we twist the N = 4 SYM theory formulated on M =

R
4. Then, we deform the action on R

4 such that only one out of sixteen supersymmetries

is preserved exactly.

Recall that the twisted theories on flat space-times such as M = R
4, T 4 are simply

a rewriting of the original theories in terms of representation of the new Lorentz group.

The twisted theory on R
4 preserves the same set of supersymmetries as in the original

theory, and the twist can be undone. A well-known way to preserve only the scalar sub-set

of supersymmetry is to carry the theory into curved space. This is in essence same as

declaring the scalar supersymmetry as some type of BRST operator. Here, we will not do

so. Instead, we will simply deform the twisted action on R
4 in such a way that only N = 1

4

is respected.8

4.1 Twist the algebra, deform the action: From N = 4 to N = 1
4 on R

4

Twisting. The N = 4 theory on R
4 can be obtained as the dimensional reduction of the

N = 1 gauge theory on R
10 down to R

4. The ten dimensional theory possess an SO(10)

Euclidean Lorentz rotation group. Upon reduction, the SO(10) group decomposes into

SO(10) −→
(

SO(4)

SO(6)

)
(4.1)

where SO(4) ∼ SU(2)L × SU(2)R is the four dimensional Lorentz symmetry action on R
4

and SO(6)R ∼ SU(4)R is the internal R-symmetry group.9

8This proposal is different from Seiberg’s N = 1
2

construction. See section 5.0.1.
9We do not distinguish the orthogonal groups from the spin groups. Whatever is implied will be clear

from the context.
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The 16 dimensional positive chirality spinor of SO(10) and the sixteen supercharges

decompose as

Qα,I ⊕Qα̇,I ∼ (2,1,4) ⊕ (1,2, 4̄) ∈ SU(2)L × SU(2)R × SU(4)R (4.2)

The twisting procedure is a choice of an [SU(2)× SU(2)]′ embedding into SU(2)× SU(2)×
SU(4)R. There are three inequivalent twists of N = 4 SYM [46], only one of which emerges

naturally from supersymmetric lattices, and the two others do not. The reasons is discussed

in detail in section 7.1.

The twist which arises naturally in supersymmetric lattices maps all the supercharges

(and fermions) into integer spin representation. This correspond to the Dirac-Kähler de-

composition of multiple-spinors as often used in lattice gauge theory. This twist arises

naturally on A∗
4 or hyper-cubic lattice definition of the N = 4 SYM theory. In order to

distinguish the twists which admit a lattice implementation [52] and the ones which do

not [46], it seems convenient to address the first class as supersymmetric lattice twists

(SL-twists).

In what follows, let us choose an SL-twist. It is most easily described by the decom-

position of 4 of SU(4)R into (2,1) ⊕ (1,2) and by the diagonal embedding of the twisted

Lorentz group,

[SU(2) × SU(2)]′ ⊂ Diag
(
[SU(2) × SU(2)]Lorentz × [SU(2) × SU(2)]R

)
. (4.3)

The spinors (and supercharges) decompose into p-form integer spins:

Qα,I ⊕Qα̇,I −→ Q(0) ⊕Q(1) ⊕Q(2) ⊕Q(3) ⊕Q(4) (4.4)

The twisted supersymmetry algebra in four dimensions has one or two nilpotent scalar

subalgeras, a particularly useful one being

(Q(0))2 ≡ Q2 = 0 (4.5)

which does not care about the background spacetime, and is a charge (which is defined

globally) even if the background space is curved or discrete. The higher form supersym-

metries, Q(1) for example, cannot be globally defined on a curved space, because of the

absence of the covariantly constant four vectors on four manifolds. Q(1) cannot be globally

defined on a lattice either, since the anti-commutator {ηQ, ηµQ
µ} · ∼ ηηµP

µ · is an in-

finitesimal translation, and there are no infinitesimal translation on the lattice. This tells

us that the exact global supersymmetry that can be achieved on lattice and on curved

spaces are necessarily the scalar subalgebra.

We label the fermionic matter content of the twisted theory as p-form Grassmann

variables (λ, ψµ, ξµν , ξ
µνρ, ψµνρσ). The bosonic content is (zµ, zµ, zµνρσz

µνρσ) where zµ =

(Sµ + iV µ)/
√

2 is a complexified gauge field which is the linear combination of the gauge

boson and four scalars of the original theory. The other scalars are the fully anti-symmetric

zµνρσ and its conjugate. We also need complex gauge covariant derivative Dµ · = ∂µ ·
+
√

2[zµ, · ], and associated two-form field strength Fµν = −i[Dµ,Dν ].
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The (off-shell) action of the 0-form supercharge Q is

Qλ = −id, Qd = 0

Qzµ =
√

2 ψµ, Qψµ = 0

Qzµ = 0

Qξµν = −iFµν

Qξνρσ =
√

2Dµz
µνρσ

Qzµνρσ =
√

2ψµνρσ, Qψµνρσ = 0

Qzµνρσ = 0 (4.6)

where d is an auxiliary field introduced for the off-shell completion of the scalar supersym-

metry subalgebra.

Deform. The N = 4 SYM lagrangian on R
4 can be expressed in a way to make only

N = 1
4 manifest. Obviously, with the spinor supercharges, the minimal amount of super-

symmetry that we can have in a supersymmetric theory is N = 1. This constraint can be

circumvented upon having a spin-0 scalar supercharge.

The twisted Lagrangian on R
4 may be written as a sum of Q-exact and Q-closed terms:

L = Lexact + Lclosed = L1 + L2 + L3 = QL̃exact + Lclosed, (4.7)

where L̃exact = L̃e,1 + L̃e,2 is given by

L̃e,1 =
1

g2
Tr

(
λ

(
1

2
id+

1

2

[
Dµ,Dµ

]
+

1

24
[zµνρσ, zµνρσ ]

))

L̃e,2 =
1

g2
Tr

(
i

4
ξµνFµν +

1

12
√

2
ξνρσDµzµνρσ

)
(4.8)

and Lclosed is given by

Lclosed = L3 =
1

g2
Tr

1

2
ξµνDρξ

µνρ +
√

2
8 ξµν [z

µνρσ, ξρσ ] (4.9)

and g is coupling constant. By using the transformation properties of fields and the equa-

tion of motion for the auxiliary field d, we obtain the Lagrangian expressed in terms of

propagating degrees of freedom:

L1 =
1

g2
Tr

(
1

2

(
1

2

[
Dµ,Dµ

]
+

1

24

[
zµνρσ , zµνρσ

])2

+ λ

(
Dµψ

µ +
1

24

[
zµνρσ, ψµνρσ

]))

L2 =
1

g2
Tr

(
1

4
FµνFµν + ξµνDµψν +

1

12
|Dµzµνρσ|2

+
1

12
ξνρσDµψµνρσ +

1

6
√

2
ξνρσ

[
ψµ, zµνρσ

])

L3 =
1

g2
Tr

(
1

2
ξµνDρξ

µνρ +

√
2

8
ξµν [zµνρσ , ξρσ]

)
. (4.10)
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The Q-invariance of the Lexact is obvious and follows from supersymmetry algebra

Q2 = 0. To show the invariance of Q-closed term requires the use of the Bianchi identity.

The Lagrangian eq. (4.7) possesses a manifest N = 1
4 supersymmetry, SO(4)′ twisted

Lorentz symmetry, and U(1)R R-symmetry.

This form of the N = 4 Lagrangian as well as its generalizations by fermionic symmetry

Q(u, v) ∼ uQ(0) + v
(
∗Q(4)

)
, u, v ∈ C (4.11)

where ∗ is Hodge-dual had multiple useful applications during the recent years. The

fermionic symmetry satisfies

[Q(u, v)]2 · ∼ uv
{
Q(0),

(
∗Q(4)

)}
· ∼ uvδz̄ · (4.12)

where z̄ = 1
4!ǫµνρσ z̄

µνρσ and δz̄ is field dependent infinitesimal gauge transformation. This

means, modulo gauge transformations, [Q(u, v)]2 = 0. Such generalizations of this twist

at special values of the complex parameters were used in studying dualities in N = 4

SYM [53] and in the comparison of A∗
4 supersymmetric orbifold lattices [43] and geometric

formulation [21] in refs. [28, 29]. These two supersymmetric lattice formulations correspond

to (u, v) ∼ (1, 0) and (u, v) ∼ (1, 1), respectively. The eq. (4.7) is also the continuum limit

of the supersymmetric matrix model regularization of N = 4 SYM theory [6].10

Let us now consider a deformation of the action eq. (4.7) into

LN= 1
4 = d1L1 + d2L2 + d3L3 (4.13)

where di are real parameters. If the deformation parameters are equal, this is the original

Lagrangian with a rescaled coupling constant 1
g2 → d

g2 .

For unequal deformation parameters, eq. (4.13) is a theory with N = 1
4 supersymmetry,

as can be shown by explicit calculation on any four manifold M . If M is flat, such as T 4

or R
4, for generic values of the deformation parameters, the twisting cannot be undone.

Hence, this is truly a theory with Q = 1 (or N = 1
4) supersymmetry even on flat spacetime.

In this sense, it is different from the topological twists, which on the flat spacetime is a

rewriting of the original gauge theory.

The eq. (4.13) seems like a BRST gauge fixing of a complexified gauge invariant

gauge theory. I have attempted to construct such a BRST gauge fixing and failed. Cur-

rently, the physical interpretation of the deformed Lagrangian is also unclear.11 Despite

these subtleties, this Lagrangian will be useful in addressing some questions about lat-

tice supersymmetry.

10One other interesting applications may be to instantons in N = 4 theory and its dimensional reductions.

The fixed points of the Q(u, v)-action in the supersymmetry transformation gives complexified instanton

equations such as uF
(2)

+ v ∗ F(2) = 0, or in components, uFµν + v 1
2
ǫµνρσF

ρσ = 0 [28, 53].
11 The ambiguity of a BRST-like interpretation, despite the BRST-like role of the spin-0 supercharge Q,

is not special to the above construction. Indeed, in the original construction of the relativistic topological

field theories from scratch, related interpretational question appeared in ref. [1]. A definitive answer along

these lines is still lacking.
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5 Matrix model regularization for N = 4 SYM in d = 4

As the Q = 16 matrix model can be written in terms of Q = 4 superfields, which is suitable

for Q = 4 supersymmetry preserving deformations, it can also be written in terms of Q = 1

superfields. A generalization of the β-flux deformation to generate four dimensional target

theories may be used to create either an hyper-cubic lattice or more symmetrical A∗
4 lattice.

What follows is a concise reformulation of earlier work [6].

The deformed matrix model action with Q = 1 exact supersymmetry is given by

SDMM =
Tr

g2

[ ∫
dθ

(
−1

2
Λ∂θΛ− Λ[zm,Zm] +

1

2
ΞmnE

mn

)

+

√
2

8
ǫmnpqrΞmn

(
e−i(Φpq+Φpr)/2zpΞqr − e+i(Φpq+Φpr)/2Ξqrzp

) ]
(5.1)

where the Q = 1 supersymmetric matrix multiples are

Λ = λ− iθd ,

Zm = zm +
√

2 θ ψm, zm, m = 1, . . . , 5

Ξmn = ξmn − 2θ Emn . (5.2)

The zm is supersymmetry singlet, and hence a multiplet on its own right. The fermi

multiplet Ξmn is anti-symmetric in its indices. The holomorphic Emn functions are the

analogs of the derivative of the superpotential ǫmnp ∂W (Z)
∂Zp and given by

Emn(Z) = e−iΦmn/2ZmZn − e+iΦmn/2ZnZm,

Emn(z) = e−iΦmn/2zmzn − e+iΦmn/2znzm . (5.3)

The eq. (5.1) is the Q = 1 supersymmetry preserving deformed matrix model formulation

of the target N = 4 SYM theory.

A convenient choice for the gauge group of the deformed matrix model is U(N2k) and

a choice of flux matrix with a commutative continuum limit is

[Φmn] =




+2π
N −2π

N

−2π
N +2π

N

+2π
N −2π

N

−2π
N +2π

N

+2π
N −2π

N +2π
N −2π

N




(5.4)

With this choice of the flux matrix, the background solution is given in [6]. Splitting the

background and fluctuations of the matrix field in eq. (5.1) and following similar steps
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in [6], we obtain the corresponding lattice gauge theory action:

S =
1

g2
Tr
∑

n

∫
dθ

(
−1

2
Λ(n) ⋆ ∂θΛ(n) − Λ(n)

⋆
[
zm(n− µm) ⋆ Zm(n − µm) − Zm(n) ⋆ zm(n)

]

+
1

2
Ξmn(n) ⋆

[
Zm(n) ⋆ Zn(n + µm) − Zn(n) ⋆ Zm(n + µn)

])

+

√
2

8
ǫmnpqrΞmn(n) ⋆

[
zp(n − µp) ⋆Ξqr(n + µm + µn)

−Ξqr(n− µq − µr) ⋆ zp(n + µm + µn)
]

(5.5)

where n is site index, (µm)ν = δmν−δm5 form = 1, . . . , 5, ν = 1, . . . , 4. This is precisely the

Q = 1 supersymmetric lattice action of ref. [43] with identical notation therein, however,

with a modified (non-local) product of lattice superfields. The exact Q = 1 supersymmetry

of the deformed model is same as the exact lattice supersymmetry of the lattice formulation.

The ⋆-product is encoded into a kernel K(j − n, k− n)

Ψ1(n) ⋆Ψ2(n) =
∑

j,k

Ψ1(j) K(j − n, k − n)Ψ2(k)

≡
∑

j,k

Ψ1(j)

(
1

L4
e−

4πi

L2θ′
(j−n)∧(k−n)

)
Ψ2(k) (5.6)

In this formula. θ′ = 2/N is a dimensionless non-commutativity parameter on the lattice,

and ∧ is the usual skew-product.

The eq. (5.5) is a U(k) lattice gauge theory on a N4 lattice. The hyper-cubic lattice

examined in [6] and the A∗
4 lattice are special points in its moduli space.

Hyper − cubic lattice : cµ =
1

a
, c5 = 0, µ = 1, . . . 4 (5.7)

A∗
4 lattice : cm =

1

a
, m = 1, . . . , 5 (5.8)

The deformed matrix model possesses a continuum limit which is local (or commutative).

This may be reached as

L = Na = fixed, N → ∞, a→ 0, (5.9)

where we keep the size of the torus fixed. The non-commutativity parameter, in dimen-

sionful units, is equal to

Θ =
N2a2θ′

4π
(5.10)

The length scale associated with the non-locality of the ⋆-product is,

ℓ⋆ ∼
√

Θ ∼ Na
√
θ′ ∼

√
Na, (5.11)
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This means, in the continuum, the non-commutativity scale tends to zero relative to the

size of the box. For our choice of parameters, we have

ℓ⋆
L

∼
√
θ′ ∼ 1√

N
→ 0 . (5.12)

By tuning θ′ to be O(1) in N counting, we may also achieve a non-commutative N = 4

SYM theory on T 4 or R
4 as in the supersymmetric examples of refs. [4, 5]. Unlike the TEK

matrix models which are recently shown to have an instability [50, 51], the deformed matrix

model shown in eq. (5.1) with appropriate choice of flux yields a non-perturbatively stable

d = 4 dimensional non-commutative gauge theory according to the criteria of ref. [50].

5.0.1 Commutative versus non-commutative theories and supersymmetry

We wish to make the relation between the A∗
4 formulation of ref. [43] and non-commutative

lattice formulation given in eq. (5.5) (at arbitrary θ′) more precise. First, let us consider

a supersymmetric gauge theory on R
4, in continuum. If we change the structure of space

such that the Grassmann even coordinates xµ are of non-commutative type, and perform

no manipulation about the anti-commuting Grassmann coordinates,

[xµ, xν ] = iΘµν , {θα, θβ} = 0 (5.13)

the resulting theory is on a non-commuting space, with anti-commuting spinor coordinates.

This manipulation does not alter the structure of the Grassmann odd-space and we can

define non-commutative versions of all supersymmetric gauge theories without upsetting

the supersymmetry.

As an alternative to the above description, Seiberg proposed a notion of non-anti-

commuting spinor coordinates. Instead of being anti-commuting, the spinor coordinates

satisfy a Clifford algebra [54]. The consistency demands that the Grassmann even space

coordinates must be non-commuting as well,

{θα, θβ} = Cαβ =⇒ [xµ, xν ] = iΘµν (5.14)

where the latter is a consequence of the first. ref. [54] showed that the deformation of

the Grassmann odd-space is consistent with half of the supersymmetry and termed this

structure as N = 1
2 supersymmetry.

We do not introduce any deformation to the anti-commutativity in the Grassmann-

odd space. Hence, in our case, whatever structure exists in the Grassmann odd space

remains intact as we pass from commutative to non-commutative space backgrounds. Thus,

ref. [54]’s proposal of getting an N = 1
2 theory and our proposal of obtaining N = 1

4 theory

are conceptually distinct. In our case, we deform the twisted-action such that only N = 1
4

remains as a symmetry of the theory. Moreover, by Morita equivalence, the theory on

the non-commutative space is equivalent to a field theory on an ordinary space, where

ordinary product is replaced by the non-local ⋆-product of fields. The Morita equivalence

of the supersymmetric theories on R
d can also be extended into supersymmetric lattice

theories [5].
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This implies, we could reach the A∗
4 lattice formulation of ref. [43] by just turning the

⋆-product in eq. (5.5) into an ordinary product, and this is indeed true. In both case, the

fermionic (scalar) coordinates satisfies {θ, θ} = 0 and the amount of supersymmetry in

these two formulations are equal. We will benefit from this simple observations in one of

the two discussions of global supersymmetries in the link approach.

5.1 Matrix model regularization for N = 1
4 SYM in d = 4

In section 4.1, we introduced a N = 1
4 SYM theory on flat T 4 (and R

4) by deforming a

twisted form of the action. The lagrangian LN= 1
4 of the target theory is given in eq. (4.13).

The main point of this deformation is the fact that one cannot undo the twist and recover

the N = 4 theory on R
4, just like the twisted gauge theory on S2. In deformed-twisted

theories with only scalar supersymmetries, we can indeed have a formulation in which both

the matrix and lattice regularization and their continuum limits respect the same scalar

sub-algebra, Q2 = 0. But as we will discuss in section 6, the same is not true for the whole

supersymmetry algebra.

Here, we give a matrix model for the theory given in eq. (4.13). The action is

SDD =
Tr

g2

[ ∫
dθ d1

(
−1

2
Λ∂θΛ− Λ[zm,Zm]

)
+ d2

(
1

2
ΞmnEmn

)

+d3

√
2

8
ǫmnpqrΞmn(e−i(Φpq+Φpr)/2zpΞqr − e+i(Φpq+Φpr)/2Ξqrzp)

]
,(5.15)

a Q = 1 preserving doubly-deformed matrix model. Note that applying the same (d1, d2, d3)

deformation to the supersymmetric A∗
4 lattice construction of ref. [43] produce a lattice

regularization for eq. (4.13). The classical continuum limit of eq. (5.15) is the N = 1
4 SYM

theory. As stated earlier, the twist of N = 1
4 cannot be undone due to the di deformation.

The exact supersymmetry in the matrix and lattice regularization is the scalar supercharge

of the twisted N = 1
4 theory, with continuum Lagrangian eq. (4.13).

6 Link approach and global supersymmetry

Link approach is a lattice proposal for the supersymmetric gauge theories. According to

the interpretation of refs. [37–40, 55] and on a matrix model formulation in [44, 45], this

formulation preserve the whole supersymmetry of the target theory on the lattice.12 More

precisely, it is claimed that, all the supersymmetries of the target supersymmetric gauge

theory can be preserved exactly on the lattice by modifying the Leibniz rule on the lattice.

Recently, ref. [32] unambiguously showed that the link approach and orbifold approach

are indeed equivalent. Here, following [32], we classify the link approach and orbifold

approach lattices in two category:

• Link(1) and Orbifold(1): Fermions associated with sites, links, faces, etc.

• Link(2) and Orbifold(2): All the fermions are associated with links.

12Also see [56] for application of link approach to the Chern-Simons gauge theory where part of the

supersymmetry is preserved, and [57] for an attempt to understand the quantum continuum limit.
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According to the criteria of ref. [10] (item (iv) in section 3), the theories obtained by

orbifolding have as many supersymmetries as the number of fermions on the sites. (These

are the fermions with zero r-charge in the nomenclature of ref. [10]). In this respect,

ref. [10] would say, the link(1)/orbifold(1) has few supersymmetries and link(2)/orbifold(2)

has none. The claim of refs. [37–40] is that with a modified Leibniz rule on the lattice, one

can devise a notion of “link-supercharge”. According to this modified criteria, both classes

above can be declared fully supersymmetric. Here, we wish to question the latter claim.13

Recall that in d = 4 dimensions, the β deformation and a mass deformation of su-

perpotential reduce the N = 4 SYM down to N = 1 [3, 46]. There is no ambiguity in

the amount of global supersymmetry here, because the other twelve supersymmetries are

explicitly spoiled by the deformation. This can be shown by explicit computation. We

can dimensionally reduce these theories down to d = 0 dimensional matrix models, and the

amount of exact global supersymmetry is unaltered by this reduction. These are the matrix

models studied in section 3 and section 3.6. We can construct a Q = 1 supersymmetry

preserving matrix model deformation of the Q = 16 matrix model too [6]. This is just a

simple generalization of the Leigh-Strassler β deformation [3].

The Q = 1 β-deformed matrix models are equivalent to the non-commutative hyper-

cubic [6] and A∗
4 formulation. The same is also valid for Q = 4 β-deformed theory for the

square or A∗
2 lattice. As discussed in section 5.0.1, the amount of the global supersymmetry

on a non-commutative lattice and commutative one is the same. The global supersymmetry

of the deformed matrix model is fewer than the undeformed theory by its construction.

Moreover, the deformed matrix model formulation has the same number of supersymmetries

as the lattice formulation, both can be written in terms of identical superfields and they

possess exactly the same supersymmetries.

Therefore, the claim of preserving all the (global) supersymmetries in the lattice theory

is identical, in the matrix model language, to the statement that the deformation of the

superpotential does not reduce the amount of supersymmetry, which is a contradiction.

Apparently, the explicitly broken supersymmetries of the deformed matrix model are

the ones associated with the “link supersymmetries”. The above simple argument shows

that there is no such global supersymmetry in the theory.

An independent argument. It is also useful to reiterate what is asserted above slightly

differently. Again, in order not to dwell into the technical discussion on the various im-

plementation of Dirac-Kähler fermions, we choose the simplest example which carry the

adequate message, and phrased everything in well-known N = 1 superfield language. Con-

sider, for example, the N = 2 SYM theory with a gauge group G = U(Nk) on R
4 or its

dimensional reductions down to d < 4. For our conclusions, (which are elementary), the

dimension does not matter because dimensional reduction in continuum commutes with the

total number of supersymmetry. The d = 4 dimensional theory possess an [SU(2)×U(1)]R

13As explained in section 1, certain criticism was raised in literature [32, 41, 42]. These discussions usually

shape around the modified Leibniz rule, and the modified “supersymmetry algebra” on the lattice [32, 41,

42]. Here, we wish to avoid the technicalities about the modified Leibniz rule altogether, and give a direct

proof which shows that the whole supersymmetry algebra cannot be preserved on the lattice.
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symmetry. The structure of the N = 2 supersymmetry in terms of N = 1 multiplets

V = (Aµ, λ), Φ = (φ,ψ) and N = 1′ multiplets V ′ = (Aµ, ψ), Φ′ = (φ, λ) (all in the adjoint

representation of gauge group G) are shown below:

Aµ??
N=1

����
�
�
�
�
�
�

__
N=1′

��
λ __

N=1′ ��

ψ??

N=1
��~~

~
~
~
~
~
~

φ

(6.1)

In order to generate a one-dimensional lattice, we perform an orbifold projection by a Zk

factor. We assign an r-charge +1 to Φ = (φ,ψ) and 0 to V = (Aµ, λ). The result is

described by a one-dimensional quiver (lattice) with a segment

Vn−1
//

Φn−2

Vn
//

Φn−1

//
Φn

Vn+1
//

Φn+1

(6.2)

Apparently, the supersymmetry of the quiver is only the N = 1 bit, with multiplets Vn =

(Aµ,n, λn) which transform as adjoint under the gauge group factor Gn and Φn = (φn, ψn) ≡
(φn,n+1, ψn,n+1) which transform as bi-fundamental under Gn×Gn+1. Thus, in the quiver,

the N = 1′ is explicitly violated.

Aµ,n<<
N=1

||xx
x
x
x
x
x
x
x

dd

nothing
$$

λn bb

nothing
""

ψn,n+1::

N=1zztt
t
t
t
t
t
t
t

φn,n+1

(6.3)

The action of a global supersymmetry transformation of an adjoint cannot produce a bi-

fundamental. According to the interpretation of [37–40], there exist “link supersymmetries”

which are the images of the N = 1′ supersymmetry of the parent. However, no such

symmetry exists in the quiver theory or any of its dimensional reductions down to d < 4.

6.1 Reinterpreting the link(2) constructions: Why are there intriguing?

The (non-supersymmetric)-lattices that are classified as link(2) or orbifold(2) are intriguing

in their own right. They have a set of remarkable properties and below, we will describe

some of them. Some of the interpretation we give below is in sharp contrast with [37–40, 55].

1. Link(2) theories do not possess any global supersymmetry at the microscopic level

in the canonical sense. They are Q = 0 (non-supersymmetric) orbifold projections of

some parent matrix theory.
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2. Link(2) lattices with Q = 0 possess larger discrete point group symmetries than the

link(1) lattices for which Q = few. The point group symmetry is in the diagonal

subspace of the chiral R-symmetry and Lorentz symmetry. Thus, large discrete

subgroups of the chiral R-symmetry are exactly realized on the lattice.

3. Link(2) lattices provide a novel lattice structure and novel implementation of the

lattice fermions which is free of doubling, just like the staggered fermions. The

link(2) is not a natural implementation of the Dirac-Kähler decomposition. For the

latter, the fermions are not all on the same footing.

4. The classical continuum limit of all link(2) lattices has full extended supersymmetry!

5. In link(2) lattices, unlike link(1) or continuum, there are no gauge invariant Grass-

mann odd observables (or fermionic operators).14

The third property implies that the classical spectrum of propagating fermionic and

bosonic fields coincide despite the absence of any exact supersymmetry on the lattice. For

all link(1) or link(2) type cubic lattices, we obtain

Pµ ≡ 2

a
sin

apµ

2
,

(
M fermions

p

)2
=
(
Mbosons

p

)2
=

d∑

µ=1

P2
µ (6.4)

for (on-shell) degrees of freedom. In eq. (6.4), pµ = 2π
Nanµ, nµ = 0, 1, . . . , N − 1 is the

momenta in the Brillouin zone. Thus, at the classical level, these theories (regardless

of whether one starts with link(1) or link(2) formulations), produce a Lorentz invariant

continuum theory with full extended supersymmetry of the continuum! This does not

mean that microscopic theory has the full supersymmetry.15

The degeneracy of fermions and bosons at the classical level (despite the absence of

exact supersymmetry) should not be viewed as a surprise. The spectral degeneracy and

the absence of doublers is an aspect of the structure of these lattices, not supersymmetry,

just like staggered fermion or geometric Dirac-Kähler fermions.

14Of course, this simple fact is sufficient to deduce that there is no exact supersymmetry in link(2)

formulations. The exact supersymmetry, if it exist, maps gauge invariant bosonic operators (and states)

into fermionic operators (and states) or vice versa. Since there are no Grassmann odd observables in

lattice(2) formulations, this also implies the absence of any exact supersymmetry.
15This remarkable property leads to some misinterpretation in literature. It is sometime stated that

exact supersymmetry is realized classically (with modified Leibniz rule etc . . . ) , and one needs to check

it at quantum level, after radiative corrections are taken into account. Assuming the first statement is

correct, the latter would be an analysis of the spontaneous breaking/nonbreaking of supersymmetry. What

happens in reality in link(2) theories is following: At the cut-off, there is no supersymmetry. At tree level

(classical) continuum, there is an emergent full set of supersymmetry. However, whether this tree level

conclusion is true or not quantum mechanically depends on the radiative corrections. In order to answer

the latter (at least in perturbation theory), one needs to check all the relevant and marginal operators

allowed by microscopic symmetries, and then check, whether they are generated or not. If there are no

such dangerous operators, then the classical result is also valid in quantum continuum limit, and one

has continuum supersymmetry without any microscopic supersymmetry. If there are dangerous relevant

operators which do get generated, then quantum continuum limit is non-supersymmetric as the microscopic

theory. Then, one needs to fine-tune to recover supersymmetry in the continuum.

– 25 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
2

A more important questions is whether the symmetries of these lattices and spectral

degeneracy of fermions and bosons can be used to reduce the fine tunings to achieve the

desired quantum continuum limit. This is an issue in which naive arguments may fail. This

will be discussed in a specific example [N = (2, 2) theory] at the end of next subsection.

6.2 Representation theory of link(2) lattices and Dirac-Kähler fermions

As emphasized in item 2) and 3), the link(2) formulations present novel implementations of

lattice fermions, reminiscent of staggered fermions and Dirac-Kähler fermion. In section 8,

we will review the precise relation between staggered fermions and Dirac-Kähler fermions

(or twisting) from the viewpoint of symmetries, as in figure 1. Below, we discuss at the

level of representation theory, the relation between link(2) formulation and Dirac-Kähler

fermions. Two examples will be detailed, the d = 2 dimensional link(2) formulation of

N = (2, 2) target theory [39] with dihedral D4 point group symmetry of order |D4| = 8

and the d = 3 dimensional link(2) formulation of N = 4 target theory [40] with full

octahedral symmetry Oh with order |Oh| = 48. The generalization to the other link(2)

theories is obvious. Recall that for the supersymmetric lattices with Q = 1 [11, 12] has

much smaller, order |Z2| = 2 and |S3| = 6 respectively. The main point that we wish to

emphasize is that the exact supersymmetry in the formulations of [11, 12] is traded with

much larger point group symmetry of the Q = 0 lattices of [39, 40].

As emphasized with figure 1, the point group symmetries for orbifold and link approach

lattices should not be interpreted as being subgroups of ordinary Lorentz group, rather

they are the subgroups living in the diagonal sum of the chiral R-symmetry and Lorentz

group, i.e, G′
point ⊂ SO(d)′. Below, we analyze the representation theory of Gpoint for

the two examples. Since exact chiral symmetry is rather important in preventing certain

dangerous relevant and marginal operators, and link(2) formulations has very large discrete

chiral symmetries, the following analysis is useful in studying the quantum continuum limit

of these theories.

6.2.1 A Q = 0 link(2) lattice and twisted dihedral group

The matter content of the Q = 0 link(2) lattice for the N = (2, 2) SYM target theory is

as follows: On a unit cell, there are two types of complexified bosonic fluctuations (z1, z2)

(and their conjugates) and four types of Grassmann fields α12, α1̄2, α12̄, α1̄2̄. The fermions

and bosons are associated with links:

α12(n) : n → n + e1 + e2, α1̄2(n) : n → n− e1 + e2,

α12̄(n) : n → n + e1 − e2, α1̄2̄(n) : n → n− e1 − e2,

z1(n) : n → n + 2e1 z2(n) : n → n + 2e2

z̄1(n) : n + 2e1 → n z̄2(n) : n + 2e2 → n (6.5)

where n is site index, (em)n = δmn for m,n = 1, 2. The highly symmetric structure of

the lattice is shown in figure 2. This lattice can be obtained by an orbifold projection

which preserves none of the supersymmetries [10]. The r-charge assignments are r(z1) =

(2, 0), r(z2) = (0, 2), r(α12) = (+1,+1), r(α1̄2) = (−1,+1) etc, and this is in a one-to-one

mapping with the position of the lattice fields on a unit cell. The action is
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Figure 2. The two dimensional lattice structure of the Q = 0 link(2) lattice formulation of

N = (2, 2) target theory. The lattice can be split into even (red) and odd (blue) sublattices.

The bosonic degrees of freedom reside on red and blue links. The fermions reside on the diagonal

magenta links. This lattice theory can be obtained by a non-supersymmetric orbifold projection of

the N = (2, 2) matrix model. There are no dynamical fields residing on the sites.

Slink(2) =
1

g2

∑

n

Tr

[
1

2

(
z̄1(n − 2e1)z1(n− 2e1) − z1(n)z̄1(n) + (1 ↔ 2)

)2

+2
∣∣∣z1(n)z2(n + 2e1) − z2(n)z1(n + 2e2)

∣∣∣
2

+
√

2 (∆n(α12, z̄1, α12̄) + ∆n(α12, z̄2, α1̄2)

+∆n(α1̄2̄, z1, α1̄2) − ∆n(α1̄2̄, z2, α12̄))

]
(6.6)

where we have used the triangular plaquette function ∆n given by

∆n(α12, z̄1, α12̄) = α12(n)
(
z̄1(n − e1 + e2)α12̄(n − e1 + e2) − α12̄(n + e1 + e2)z̄1(n)

)

∆n(α12, z̄2, α1̄2) = α12(n)
(
z̄2(n + e1 − e2)α1̄2(n + e1 − e2) − α1̄2(n + e1 + e2)z̄2(n)

)

∆n(α1̄2̄, z1, α1̄2) = α1̄2̄(n)
(
z1(n − e1 − e2)α1̄2(n + e1 − e2)

−α1̄2(n − e1 − e2)z1(n − 2e1)
)

∆n(α1̄2̄, z2, α12̄) = α1̄2̄(n)
(
z2(n − e1 − e2)α12̄(n − e1 + e2)

−α12̄(n − e1 − e2)z2(n − 2e2)
)

(6.7)

This is the link(2) action studied in [39]. In the discussion of the representation theory of

point group symmetry, we ignore lattice site index n for convenience.16

16 A novel lattice formulation for QCD(adj): Slight modification of this action can also be used in

formulating QCD with adjoint fermions in various dimensions. Substitute complex bosonic link matrices

zm(n) with group valued unitary link matrices Um(n). Resulting theory is a new lattice formulation of

lattice QCD(adj) in two dimensions. Generalization to d = 4 dimensions is obvious, and is an alternative
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classes: (e) (2C4) (C2) (2 C ′
2) (2C ′′

2 )

A1 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

Table 1. The character table of D4, the point symmetry group of two dimensional link(2) lattice

formulation for N = (2, 2) theory [39]. e is identity, C4 and C2 are rotations by π/4 and π/2, C′
2 are

reflections with respect to e1 and e2 axis, and C′′
2 are reflections with respect to diagonals, e1 ± e2.

The Q = 0 link(2) formulation of the N = (2, 2) has a D4 point group symmetry

with order eight. These are the full set of symmetry operations of a square and are shown

in table 1. This should be contrasted with the Z2 point group symmetry of the Q = 1

supersymmetry preserving regularization of the N = (2, 2) SYM theory [11]. The ap-

parent trade-off here is between supersymmetry and point group symmetry. In link(2),

one achieves much larger point group symmetry D4 to the price of giving up the exact

lattice supersymmetry.

One other interpretational distinction relative to [39] that we wish to emphasize is that,

the link fermions are not the natural implementation of the Dirac-Kähler decomposition

on lattice (although see the appendix of [37]). In particular, in link(2) formulation, all the

fermions are on the same footing. They do transform to one another under π/4 rotations,

and this is also an invariance of action. However, in a natural implementation of Dirac-

Kähler fermions, the fermions are one zero form ψ(0), two one-form ψ(1) and one two-form

ψ(2) . Obviously, no lattice rotation can map a zero form ψ(0) to a one-form ψ(1) or vice-

versa. Therefore, in what sense, the link(2) formulation is related to the Dirac-Kähler

fermions? One other related puzzle: Obviously, ψ(0) is a scalar under SO(2)′. Therefore,

it must be in a scalar representation of any discrete subgroup Gpoint of SO(2)′. How does

this reconcile with the link nature of all the fermions?

In order to answer these questions, we classify the fields on the lattice in terms of

the irreducible representations of D4. We expect the irreducible representations under D4

to have a natural interpretation under SO(2)′. To do so, we consider the action of the

elements of D4 (one from each conjugacy class) on the lattice fields, and then evaluate the

for staggered fermions. To obtain QCD(adj) with four Weyl fermions from the link(2) N = 4 SYM, use

the prescription: zm(n) → δmµUµ(n) + δm50, where m = 1, . . . , 5, µ = 1, . . . 4 which replaces four algebra

valued fields with the group valued once and set the extra scalar to zero.

– 28 –



J
H
E
P
0
5
(
2
0
0
9
)
0
8
2

character of the operation. The action of g ∈ D4 on elements of a unit cell is given by

(e) : (α12, α1̄2, α1̄2̄, α12̄), (z1, z2) → (α12, α1̄2, α1̄2̄, α12̄), (z1, z2)

C4 : → (α1̄2, α1̄2̄, α12̄, α12), (z2, z̄1)

C2 : → (α1̄2̄, α12̄, α12, α1̄2), (z̄1, z̄2)

C ′
2 : → (α12̄, α1̄2̄, α1̄2, α12), (z1, z̄2)

C ′′
2 : → (α12, α12̄, α1̄2̄, α1̄2), (z2, z1) (6.8)

The character is χ(g) = Tr(M(g)), where M(g) is a matrix representation of the operation

g. Since the character is a class function, it is independent of representative. Thus, we make

a character multiplet [χ(M(e)), . . . , χ(M(C ′′
2 ))]. For the fermions, the hermitian ℜ(bosons)

and anti-hermitian ℑ(bosons) components of link bosons, we obtain

χfermions = [4, 0, 0, 0, 2] = A1 ⊕B2 ⊕ E

χℜ(bosons) = [2, 0, 2, 2, 0] = A1 ⊕B1

χℑ(bosons) = [2, 0,−2, 0, 0] = E (6.9)

The gauge bosons [ℑ(bosons)] and scalars [ℜ(bosons)] respectively fill in vector and pseudo-

vector representation of the twisted SO(2)′. Under the D4 subgroup, there is a two di-

mensional irreducible representation E corresponding to vectors. The pseudo-vector is

reducible and splits as A1 ⊕B1. The fermions apparently form a reducible representation

and split into two one dimensional representations (A1 and B2) and a two dimensional vec-

tor representation E. We can indeed identify the irreducible representations of D4 with the

natural realization of the Dirac-Kähler fermions on the lattice, for example, the zero-form

ψ(0) ∼ 1
2 (α12 + α1̄2 + α1̄2̄ + α12̄) where the right hand side corresponds to A1. Thus, the

irreducible representation of the D4 nicely maps into the Dirac-Kähler twisted version of

continuum, with twisted rotation group SO(2)′. In other words,

A1 ⊕ E ⊕B2 ∼ ψ(0) ⊕ ψ(1) ⊕ ψ(2) ∼ 1 ⊕ 2 ⊕ 1 (6.10)

Similar phenomena also takes place in supersymmetric A∗
d lattices where the decomposition

of link and face fermions into the irreducible representations under the permutation group

S′
d+1 ⊂ SO(d)′ results in the usual Dirac-Kähler decomposition. This is also how the link(2)

lattice produces the Dirac-Kähler twist in its continuum.

Remark. The gauging of the Dirac-Kähler fermions and link fermions are also different.

For example, although the 1
2 (α12 + α1̄2 + α1̄2̄ + α12̄) is a singlet under D4, it cannot

be contracted with any other D4 singlet to form a relevant (or irrelevant) gauge singlet

operator at any finite lattice spacing. The reason is, in the gauged lattice theory, (α12 +

α1̄2 +α1̄2̄ +α12̄) does not transform co-variantly under gauge rotations. Let G(n) denote a

gauge rotation associated with site n. Then, under a gauge transformation, the constituents

transform as

α12(n) → G(n) α12(n) G†(n + e1 + e2), α1̄2(n) → G(n) α1̄2(n) G†(n − e1 + e2),

α12̄(n) → G(n) α12̄(n) G†(n + e1 − e2), α1̄2̄(n) → G(n) α1̄2̄(n) G†(n − e1 − e2). (6.11)
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This means, the combination of gauge invariance andD4 symmetry is vastly more restrictive

than each would be individually. The combination restricts the type of operators that one

can write down. This also shows that, at finite lattice spacing, the link fermions and

Dirac-Kähler implementation are truly different. For example, the zero form site fermion

transform by conjugation, ψ(0)(n) → G(n) ψ(0)(n) G†(n). Of course, in classical continuum

limit, this difference is lifted, since all the fermion and boson fields transform as adjoints.

Comments on classical and quantum continuum limits. Consider the classical and

quantum continuum limit of the link(2) formulation. In the classical continuum limit,

Slink(2) = SN=(2,2)[1 +O(aq)] (6.12)

where SN=(2,2) is the action for the continuum N = (2, 2) theory, and q is some Eu-

clidean momenta.

We wish to understand the quantum continuum limit of these theories when the ra-

diative corrections are taken into account. (Below, we follow the analysis of section 5 of

ref. [11] verbatim.) Consider a radiative correction to the action of an operator O with

dimension p

δS =
1

g2
2

∫
d2xCOO (6.13)

Since the lattice theory is a Q = 0 theory, there is no integration over a superspace coor-

dinate. In power counting, we use the classical scaling dimensions, [dx] = −1, [bosons] =

+1, [fermions] = +3/2, [g2
2 ] = +2, and a is the lattice spacing. By [11], the coefficient CO

has a loop expansion

CO = ap−4
∑

ℓ

cℓ
(
g2
2a

2
)ℓ

(6.14)

where cℓ may have logarithmic dependence on the lattice spacing a.

The operators for which p − 4 + 2ℓ ≤ 0 are the only possible local counter-terms. At

classical ℓ = 0 level, the long distance action for the lattice theory agrees with the target

theory, as shown in eq. (6.12). For l ≥ 2, there are no local relevant or marginal counter-

terms that get induced radiatively. However, for ℓ = 1, the scalar mass operator with p = 2

may receive a logarithmic correction.

This is unlike the Q = 1 supersymmetric lattice [11]. In that case, only the counter-

terms with p− 7/2 + 2ℓ ≤ 0 are possible due to exact supersymmetry and the scalar mass

operator does not get induced radiatively.

The scalar mass operator is a relevant operator which does affect the physics of the

target theory, and it is allowed by all the symmetries of the link(2) lattice action. Is it,

however, possible that an operator which is allowed by all the symmetries of the microscopic

theory may not be generated? Or is there a reason to think that the behavior of these

theories in the continuum may be tamer than the above analysis suggests? Naively, the

spectrum of fermions and bosons are degenerate even at a finite lattice spacing, and the

number of degrees of freedom of both types is balanced. For each fermionic loop, there is a
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bosonic loop and vice versa. Moreover, the eq. (6.12) implies that the interaction vertices

of the theory defined by Slink(2), close to the continuum limit, may be expressed as

V lattice = V cont.[1 +O(qa)] (6.15)

When inserted into loops, the leading term really just behaves like the extended super-

symmetric theory and the correction has an extra suppression factor relative to eq. (6.14).

Perhaps, despite the absence of any supersymmetry at the cut-off, these features may be

sufficient to suppress dangerous relevant operators. That would be another way to have

naturally light scalars without microscopic supersymmetry or shift symmetry, and would

be remarkable.

However, the above line of reasoning may be too naive. In a lattice gauge theory and

effective theories, there are cases in which a naively irrelevant operator becomes important

and generates unwanted relevant operators. Such behavior may occur if the lower dimension

relevant operator is not protected by a symmetry. The best known example, which has

a resemblance to the above discussion, is about the chiral symmetry on the lattice and

Wilson fermions [35].17 The Wilson’s lattice fermion Lagrangian is

ψ (iγµDµ −m− ar∆)ψ (6.16)

where Dµ and ∆ are gauge covariant Dirac-operator and Laplacian, a is lattice spacing,

m is bare mass and r is an order one parameter introduced to lift the spurious doublers.

In the naive continuum limit, the operator proportional to lattice spacing is an irrelevant

dimension five operator. Both m and r terms explicitly violate the chiral symmetry. In this

theory, the fermion mass term, instead of being multiplicatively renormalized, is additively

renormalized by a term proportional to r/a. Thus, the naively irrelevant dimension five

operator radiatively induces a dimension three operator. If the target theory is massless

or a theory with a light fermion, the exact or approximate chiral symmetry of the naive

continuum limit is spoiled by a so called “irrelevant” operator.

The danger in the link(2) formulation is analogous. There is no symmetry which

protects scalar masses in these formulations in general. The naive classical continuum limit

has supersymmetry. What one really needs to check are the higher dimension, irrelevant

operators which may generate the scalar mass operator when inserted into loops. Perhaps,

just like the absence of the chiral symmetry does not admit naturally light fermions, the

absence of the exact supersymmetry does not admit light scalars either.18 To sum up, we

are inconclusive about the amount of fine-tuning in the quantum continuum limit of the

Q = 0 link(2) theory.

17I thank David B. Kaplan for the line of reasoning below.
18However, both supersymmetric link(1) and non-supersymmetric link(2) formulations are the orbifold

projections of a supersymmetric matrix model. There is a non-perturbative equivalence between parent-

daughter pairs related to one another by orbifold projections. The necessary and sufficient conditions for the

validity of these large N equivalences can be found in [58]. In particular, such large N equivalences imply the

daughter-daughter equivalences, in some cases relating a supersymmetric theory to a non-supersymmetric

one. In particular, link(1) and link(2) formulations are such pairs. In link(1), scalar mass term is forbidden

by supersymmetry. The equivalence implies, if the mass term is generated for scalars in link(2), it must

be an O(1/N) effect. In phenomenology, in a class of non-supersymmetric theories, ref. [59] argued the

existence of light scalars and large hierarchies without fine-tuning as a consequence of such susy-nonsusy
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classes: (e) (8C3) (3C2) (6 C ′
2) (6C4) (i) (8S3) (3S2) (6 S′

2) (6S4)
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 -1 -1 1 1 1 -1 -1
Eg 2 -1 2 0 0 2 -1 2 0 0
T1g 3 0 -1 -1 1 3 0 -1 -1 1
T2g 3 0 -1 1 -1 3 0 -1 1 -1
A1u 1 1 1 1 1 -1 - 1 - 1 - 1 - 1
A2u 1 1 1 -1 -1 -1 -1 -1 1 1
Eu 2 -1 2 0 0 -2 1 -2 0 0
T1u 3 0 -1 -1 1 -3 0 1 1 -1
T2u 3 0 -1 1 -1 -3 0 1 -1 1

Table 2. The character table of full octahedral group Oh, the point symmetry group of the three

dimensional link(2) lattice formulation for N = 4 (or Q = 8) target theory [40]. e is identity, 8C3

are rotations by 2π/3 along the body-diagonals, 3C2 and 6C4 are rotations by π/2 and π/4 along

the line passing through the center of faces, 6C′
2 are rotations by π along the lines cutting the edges

in the middle. i is inversion, and S = C × i. The character table of Oh can be deduced from the

product of octahedral group O (upper-left five by five block) and the I inversion group.

6.2.2 Representation theory for the twisted full octahedral group

The matter content of the Q = 0 link(2) lattice for the d = 3 dimensional N = 4 SYM target

theory is as follows: On a unit cell, there are three types of complexified bosonic fluctuations

(z1, z2, z3) (and their conjugates) and eight types of Grassmann fields α123, α1̄23, . . . etc.

The fermions reside on the links

α123 : 0 → +e1 + e2 + e3 α1̄2̄3̄ : 0 → −e1 − e2 − e3

α12̄3̄ : 0 → +e1 − e2 − e3 α1̄23 : 0 → −e1 + e2 + e3

α1̄23̄ : 0 → −e1 + e2 − e3 α12̄3 : 0 → +e1 − e2 + e3

α1̄2̄3 : 0 → −e1 − e2 + e3 α123̄ : 0 → +e1 + e2 − e3 (6.17)

and the bosons are associated with

z1 : 0 → +2e1 z2 : 0 → +2e2 z3 : 0 → +2e3, (6.18)

The point group symmetry is the full octahedral group Oh = O ⋉ I where O is the

pure rotations and I is the inversion. Hence, Oh has both proper and improper rotations.

The 48 group operations and the character table are shown in table. 2.

As in the two dimensional example, we wish to understand the representations of vari-

ous lattice fields and decompose them into their irreducible representations. It is sufficient

daughter-daughter equivalences. It is likely that similar suppression of various dangerous operators may

also take place in link(2) theories, at least in the large N limit. These observations are in agreement with

the structure of the perturbative planar and non-planar loop expansions discussed by Nagata [56].
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to first inspect the action of g ∈ O subgroup of Oh on the fields on a unit cell

(e) :→ (α123, α12̄3̄, α1̄23̄, α1̄2̄3, α1̄2̄3̄, α1̄23, α12̄3, α123̄), (z1, z2, z3)

(8C3) :→ (α231, α23̄1̄, α2̄31̄, α2̄3̄1, α2̄3̄1̄, α2̄31, α23̄1, α231̄), (z2, z3, z1)

(3C2) :→ (α1̄2̄3, α1̄23̄, α12̄3̄, α123, α123̄, α12̄3, α1̄23, α1̄2̄3̄), (z̄1, z̄2, z3)

(6C ′
2) :→ (α213̄, α21̄3, α2̄13, α2̄1̄3̄, α2̄1̄3, α2̄13̄, α21̄3, α213), (z2, z1, z̄3)

(6C4) :→ (α21̄3, α213̄, α2̄1̄3̄, α2̄13, α2̄13̄, α2̄1̄3, α213, α21̄3̄), (z2, z̄1, z3) (6.19)

The inversion (i) acts as

(i) :→ (α1̄2̄3̄, α1̄23, α12̄3, α123̄, α123, α12̄3̄, α1̄23̄, α1̄2̄3), (z̄1, z̄2, z̄3) (6.20)

Since Oh = O ⋉ I, the character multiplet [χ(M(e)), . . . , χ(M(S4))] can be deduced by

eq. (6.19) and eq. (6.20), where M(g) is a matrix representation of the g ∈ Oh. By

studying the action of g ∈ Oh on fermions, and hermitian and anti-hermitian parts of the

bosonic link matrices, the character multiplets can be obtained as

χfermions = [8, 2, 0, 0, 0, 0, 0, 0, 4, 0] = A1g ⊕ T2g ⊕ T1u ⊕A2u

χℜ(bosons) = [3, 0, 3, 1, 1, 3, 0, 3, 1, 1] = A1g ⊕ Eg

χℑ(bosons) = [3, 0,−1,−1, 1,−3, 0, 1,−1, 1] = T2u (6.21)

The gauge boson remains irreducible under Oh ⊂ SO(3)′ and fills in the three dimensional

T2u representation. The scalars are as well in the three dimensional vector representation

of twisted SO(3)′ group, however, they are pseudo-vector as opposed to being vectors.

The characters for the inversion operation are χℑ(bosons)(i) = −3 and χℜ(bosons)(i) = +3

reflecting vector and pseudo-vector nature of these fields. The pseudo-vector representation

of SO(3)′ is reducible under the Oh subgroup, and splits as A1g ⊕ Eg. For fermions,

everything works out beautifully. The irreducible representations of the Oh map into the

Dirac-Kähler twisted version of continuum:

A1g ⊕ T2g ⊕ T1u ⊕A2u ∼ ψ(0) ⊕ ψ(1) ⊕ ψ(2) ⊕ ψ(3) ∼ 1 ⊕ 3 ⊕ 3 ⊕ 1 (6.22)

Let us reiterate the conclusion of the previous section: Although there is a one to one

map between the irreducible representation of Oh and Dirac-Kähler decomposition, the

gauging of the link fermions and p-form fermions are different. Thus, there is no gauge co-

variant identification of the various p-form lattice fermions and link formulation fermions

at any finite lattice spacing. Of course, in the continuum, the discrepancy disappears. This

is the sense in which the link fermion approach is tied with the Dirac-Kähler structure of

the continuum formulation.

6.3 A Q = 0 deformed matrix model for link(2) formulations

The equality of the number of supersymmetries in the deformed matrix models and super-

symmetric orbifold lattices suggests that there must also exist a Q = 0 deformed matrix

models which reproduce the non-supersymmetric Q = 0 link(2) lattices. The Q = 0 matrix
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model for N = (2, 2) target theory may be found by adapting the techniques of the ref. [6].

The corresponding non-supersymmetric deformed matrix model action is

Sdeformed =
1

g2
Tr

[
1

2

(
[z̄1, z1] + [z̄2, z2]

)2
+ 2
∣∣∣eiβ/2z1z2 − e−iβ/2z2z1

∣∣∣
2

+
√

2
(
α12[z̄1, α12̄]β/4 + α12[z̄2, α1̄2]−β/4 + α1̄2̄[z1, α1̄2]β/4

−α1̄2̄[z2, α12̄]−β/4

)
]

(6.23)

where

[z̄1, α12̄]β/4 ≡ eiβ/4 z̄1α12̄ − e−iβ/4 α12̄z̄1 (6.24)

For β = 0, the action is the dimensional reduction of the d = 4 N = 1 SYM theory

down to d = 0 and possesses Q = 4 supersymmetries. For β 6= 0, the eq. (6.23) possesses

no fermionic symmetry at all. This can be seen explicitly by computation. For example,

Qz1 =
√

2α12̄ Qz̄1 = 0

Qz2 =
√

2α1̄2 Qz̄2 = 0

Qα12 = −[z̄1, z1] − [z̄2, z2] Qα12̄ = 0

Qα1̄2̄ = 2[z̄1, z̄2] Qα1̄2 = 0. (6.25)

is an on-shell supersymmetry of the undeformed theory, the one given in ref. [11]. But this

is not a supersymmetry of the deformed action given in eq. (6.23). This is also true for all

four supersymmetries or any linear combination thereof.

It is in fact transparent that the eq. (6.23) cannot have any of the fermionic symmetries

of the undeformed theory. One reason is the mismatch of the β commutators in the bosonic

and fermionic parts of the action. The form of the deformed action in the fermionic terms is

Sf ∼ α12[z̄1, α12̄]β/4 = eiβ/4α12z̄1α12̄ − e−iβ/4α12α12̄z̄1, (6.26)

whereas, for example, the second bosonic term is

Sb ∼ |[z1, z2]β/2|2 = z1z2z̄2z̄1 + z2z1z̄1z̄2 − eiβz1z2z̄1z̄2 − e−iβz2z1z̄2z̄1 (6.27)

The variation of action under a supersymmetry transformation of the undeformed theory

fails to vanish, because various terms which are supposed to cancel multiply different phase

factors, for example e±iβ/4 versus e±iβ. Thus, the action shown in eq. (6.23) is a Q = 0

non-supersymmetric deformation of the Q = 4 matrix model.

There is also a nice physical interpretation for the difference of the various phase

factors as discussed in detail in supersymmetric case in ref. [6]. The deformed matrix

model eq. (6.23) can be obtained from the eq. (6.6), by dimensionally reducing the lattice

action to a single point on the lattice by using the ’t Hooft’s twisted boundary conditions

for lattice fields. This is a dimensional reduction on lattice with a background flux. In

figure 2 and eq. (6.6), there are three types of plaquettes that enters into the action,
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Figure 3. Examples of oriented square and triangular plaquettes. If there is a background field, the

net flux passing through the square is four times (in magnitude) the one of triangle. If the theory

is reduced to a single point by using the twisted boundary conditions of ’t Hooft, it produces the

action with a e±iβ phase for the reduction of square plaquettes, and e±iβ/4 phase for the triangle

plaquettes.

with counter-clockwise and clock-wise orientations. These are square plaquettes with area

4a2, triangular plaquettes with area a2 and flipped-L plaquettes with zero-area [18]. In

the reduction with background flux, the phase factors appearing in the reduced matrix

model are the fluxes passing through the corresponding surface prior to the reduction. See

figure 3. These corresponds to the phases e±iβ/4, e±iβ, for triangular and square plaquettes,

and identity otherwise.19

More specifically, consider the eq. (6.23) with U(2Nk) algebra valued Grassmann odd

and even matrices and β = 4 2π
2N . Both choices are for the convenience of the presentation.

Then, the background and fluctuations of the Q = 0 matrix model can be transmuted into

a lattice gauge theory on a (2N)2 non-commutative lattice with U(k) gauge group. The

resulting action is a familiar one, and gives

Sdeformed = Slink(2)|⋆. (6.28)

where Slink(2)|⋆ is same as in eq. (6.6) with the modification of ordinary product into a

⋆-product. As discussed in section 5.0.1, the commutative and non-commutative gauge the-

ories carry equal amount of supersymmetries so long as no deformation in the Grassmann

odd space is introduced as done in [54]. Thus, Slink(2)|⋆ has as much global supersymmetries

as Slink(2), which implies a Q = 0 formulation.20

19In orbifold lattices (either supersymmetric or non-supersymmetric), the straight-forward dimensional

reduction to a single point enhances the amount of supersymmetry to the level of parent matrix theory.

Recall that in continuum, there is no enhancement of number of supersymmetries upon dimensional reduc-

tion. In lattice, the reduction by using the ’t Hooft twisted boundary conditions however, keeps the number

of the preserved supersymmetries intact. Both the lattice theory and matrix model has equal number of

supersymmetries, which may be Q = few [6] or Q = 0 as in eq. (6.23).
20 Following footnote. 16, we may substitute group valued matrices instead of algebra valued complex

matrices. The resulting theory is a matrix model regularization for d = 2 dimensional QCD with adjoint

fermions. The d = 4 dimensional generalization is obvious. These are some exotic variations to the TEK

models with commutative continuum limits. The continuum limit can also be made non-commutative if

desired.
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7 Supersymmetric lattice (SL)-twists and topological field theories

There are currently three types of proposal for a non-perturbative formulation of four

dimensional N = 4 SYM theory. These are

• Exact Lattice supersymmetry [Orbifold, geometric, Dirac-Kähler, topological field

theory motivated refs. [21, 25, 43]]

• Approaches with no microscopic supersymmetry [with Ginsparg-Wilson fermions [8],

link(2) of ref. [39] with the re-interpretation of section 6.1]

• Supersymmetric/non-supersymmetric deformed matrix models, ref. [6] and general-

ization of section 6.3

Although having a non-perturbative definition of a supersymmetric gauge theory is

important in its own right, it is expected that the broader applications of these lattices will

be via gauge-gravity duality. A lattice definition of the various sixteen supercharge theories

may open up a non-perturbative window into quantum gravity, string theory, and in the

large N limit into supergravity [43]. Also see refs. [60, 61] for a non-lattice simulations of

these theories. The motivations of these works is to provide a strong-coupling test to gauge

gravity duality as well. There are however two practical obstacles on the way for typical

numerical simulations of supersymmetric lattices: the fermion sign problem.21 and the

amount of fine tuning. In four dimensional supersymmetric lattices, the amount of fine-

tuning is still not fully understood, however, it is believed to be surmountable. In d ≤ 3, no

fine tuning is necessary [10]. If these theories can be solved numerically, this will necessitate

going beyond what is currently known in supergravity, which is mostly limited to two point

functions and thermal behavior as emphasized recently in [62] In this section, we will not

make remarks on the numerical investigations of supersymmetric theories which is already

ongoing. See for example [63–65].Rather, we wish to address where SL-twists fit within the

class of all twisted supersymmetric theories, and their interrelation to topological theories.

Recent studies on lattice supersymmetry showed that supersymmetric lattices in their

continuum limit, always give the twisted version of the supersymmetric theories. These

are non-topological physical theories. However, if desired, one can make them topological

by declaring the scalar supercharge Q as a BRST operator, and consider only the states

|Ω〉 annihilated by Q as physical, i.e., Q|Ω〉 = 0, modulo those which can be written as

|Ω′〉 ∼ Q|Ω′′〉. In this sense, there is also an intimate connection between the topological

field theories and supersymmetric lattices.

A common tread in both topological field theory and lattice supersymmetry is the

existence of a nil-potent scalar supercharge Q. However, although all supersymmetric

lattices may correspond to the twisted version topological field theories (in the above

sense), the reverse statement is not true. Given a supersymmetric twist with a scalar

supercharge, we are not guaranteed to have a (non-problematic) supersymmetric lattice

formulation. Below, we examine this in connection with the twists of the N = 4 SYM

theory in d = 4.

21This is a problem in the continuum, sourced by Yukawa couplings. It is not possible to avoid it.
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7.1 Three twists of N = 4 SYM in d = 4: Why SL-twist is special?

The N = 4 SYM theory in d = 4 has three inequivalent twists, i.e, three inequivalent

embedding of an SU(2) × SU(2) into SU(4)R symmetry, each of which results in one or

two scalar supersymmetries [46]. These classes are most easily described by providing the

decomposition of 4 of SU(4) in eq. (4.2).22

i) (2,1) ⊕ (1,2), (SL − twist)

ii) (1,2) ⊕ (1,2)

iii) (1,2) ⊕ (1,1) ⊕ (1,1) (7.1)

Under these embedding, the supercharges (and fermions) transform as

i) fermions → (1,1) ⊕ (2,2) ⊕ [(3,1) ⊕ (1,3)] ⊕ (2,2) ⊕ (1,1)

→ 1 ⊕ 4⊕ 6 ⊕ 4⊕ 1 (SL − twist)

ii) fermions → 2 ×
[
(1,1) ⊕ (2,2) ⊕ (3,1)

]

iii) fermions →
[
(1,1) ⊕ (2,2) ⊕ (3,1)

]
⊕ 2 ×

[
(2,1) ⊕ (1,2)

]
(7.2)

under the twisted rotation group

[SU(2)L × SU(2)R]′ × (Ga) ⊂ [SU(2)L × SU(2)R] × SU(4)R (7.3)

where class-dependent global R-symmetry factor Ga (a = i, ii, iii) is not important for our

purpose. The gauge boson, which is a SU(4) singlet, transforms as (2,2). The scalars are

singlet under the Lorentz symmetry and is in 6 = 4 ∧ 4, anti-symmetric representation

of SU(4). Therefore, eq. (7.1) uniquely fixes the decomposition of 6 under the twisted

rotation group, for example,

i) [(2,1) ⊕ (1,2)] ∧ [(2,1) ⊕ (1,2)] = (2,2) ⊕ 2(1,1), (7.4)

and similarly,

ii) 3(1,1) ⊕ (1,3) iii) 2(1,2) ⊕ 2(1, 1) (7.5)

As stated above, all three twists support the existence of at least one nil-potent scalar

supercharge Q ∼ (1,1), with Q2 = 0, modulo gauge rotations. The first two has two and

the last has one. One would naively expect that, since Q2 = 0 does not interfere with any

translation, it should be implementable on the lattice. This intuition is not completely

correct. The reason is, what is allowed and what is not in a lattice regularization of

supersymmetric theories has a number of other constraints. The existence of a nil-potent

supercharge Q in twisted version is not sufficient.

First, note that, all three twists have a copy of the twist of N = 2 SYM theory in

d = 4 [1] where eight supercharges decompose as (1,1) ⊕ (2,2) ⊕ (3,1). This structure

exists in a L′ ↔ R′ symmetric manner in the first twist and asymmetric for the last two.

This means that, in case i), instead of self-dual two-forms, we can just think of two-forms,

22This categorization is given on pg.8 of ref. [46]. However, the first class there must be as above.
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without self-duality condition. In lattice gauge theory, the implementation of the self-

duality condition in a manifestly gauge covariant fashion is problematic. For example, in

continuum, we will have Qψµν,+ = Fµν,+ ≡ Fµν + 1
2ǫ

µνρσFρσ where both of ψµν,+ and

Fµν,+ are in self-dual (3,1) representation. The gauge-covariant implementation of the

right-hand side on the lattice is not clear, and hence, the meaning of the left hand side

(a self-dual Grassmann) is also unclear. This means, the twist ii) and iii) are not very

pleasant from lattice point of view. Furthermore, the iii) case also involves double-valued

representation scalars and spinors, which are again in double-valued spinor representations

of the lattice point group symmetry and do not have a natural habitat on lattice, unlike

the p-form p-cell mapping.

The supersymmetric (orbifold) lattices always produce the twists which do not involve

any self-duality conditions. All the fields are in single-valued integer spin representations,

and naturally yields twist i), with Q(u, v) = Q(1, 0) = Q or the dual Q(u, v) = Q(0, 1) =

∗Q(4), in the notation of eq. (4.11).

Remark. In the topological field theory literature, it is sometimes asserted that the

twist of type i) did not have any application to physics up until the recent discussion of

the dualities of ref. [53]. Most likely, what is meant here is topological applications. This

twist had beautiful realizations and applications in supersymmetric lattices. Moreover, if we

move to the application outside the supersymmetric or topological context, we immediately

realize that the twist of type i) had the most application of all, in particular in lattice

gauge theory. The staggered fermions is the twisted version of the complex representation

fermions, and the reduced staggered fermions are the twisting applied to real representation

fermions. Both are used practically in numerical QCD and discussed in standard textbooks.

However, the language is slightly different. In the next section, I will rephrase the staggered

fermions as twisting applied to QCD.

8 Twisting in QCD and staggered fermions

In this section, I rephrase the (reduced) staggered fermions as an elegant application of

twisting into QCD. The main point of this section is shown in figure 1. Needless to say, these

theories do not admit a topological interpretation, and the twisted theory is necessarily

physical. (Recall that in supersymmetric context, we are free to make that choice and

switch between the two.) The discussion below borrows from refs. [66, 67] and the lecture

notes [35]. In particular, the interrelation between reduced staggered fermions and the

twists useful in the supersymmetric gauge theories was emphasized to me by D.B. Kaplan.

8.1 Staggered fermions as twisted complex representation fermions

Consider massless QCD on R
4 with Nf = 4 complex (for example, fundamental) represen-

tation fermions. We label Dirac spinors as

ΨI =

(
ψα

χα̇

)

I

(8.1)
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and ΨI where I = 1, . . . , 4 is the flavor index. The theory possesses

GQCD = [SU(2)L × SU(2)R]Lorentz × [U(4)L × U(4)R]flavor (8.2)

space-time and (classical) chiral flavor symmetries. Under GQCD, the fermions transform as

ψα,I ∼ (2,1,4,1), χα̇,I ∼ (1,2,1,4) (8.3)

It is convenient to use the vector-like sum U(4)V ∼ U(4)L+R of the flavor symmetry for

our purpose. The Weyl components ψI (χI) fill in (2,1,4) and (1,2,4) under [SU(2)L ×
SU(2)R]Lorentz× [U(4)V ]flavor. Clearly, the flavor symmetries are sufficiently large such that

it can accommodate a copy of Lorentz group, i.e, SO(4) ⊂ U(4)V . Thus, the problem maps

into the discussion in section 4.1, with twice as much fermion content. The next steps

are identical. We use the decomposition of 4 of U(4)V into (2,1) ⊕ (1,2) and perform a

diagonal embedding

SO(4)′ ∼ Diag
(
SO(4)Lorentz × SO(4)flavor

)
. (8.4)

Under SO(4)′, the fermions of the original theory map into integer-spin representations,

p-forms. In an hyper-cubic lattice whose point group symmetry is a discrete subgroup of

Gpoint ⊂ SO(4)′, it is natural to associate a p-form with a p-cell. This is the Dirac-Kähler

or geometric representation of fermions in lattice.

The above procedure can equivalently be described as follows: ΨΥI is a four by four

matrix, where Υ = 1, . . . 4 is the Dirac spinor index and I = 1, . . . 4 is the flavor index. By

using four dimensional Euclidean Dirac-matrices γµ, µ = 1, . . . 4, we can define a basis B
for GL(4,C) given by

B ≡ {ΓA, A = 1, . . . 16} = {1, γµ, γ[µν], γ[µνρ], γ[µνρσ]} (8.5)

where [. . .] denotes (normalized) anti-symmetrization. B forms an orthonormal, complete

basis for the GL(4,C). The generators satisfy Tr ΓAΓB = 4δAB . Let us also define

{ψA, A = 1, . . . 16} ≡ {ψ,ψµ, ψ[µν], ψ[µνρ], ψ[µνρσ]} (8.6)

the collection of p-form Grassmann valued fields. Thus, we can write

(Ψ)ΥI =
16∑

A=1

ΓAψA, ψA =
1

4
Tr[ΨΓA] (8.7)

or making the SO(4)′ transformation properties transparent

(Ψ)ΥI =

(
ψ1 + ψµγµ +

1

2!
ψµνγ[µν] +

1

3!
ψµνργ[µνρ] +

1

4!
ψµνρσγ[µνρσ]

)

ΥI

(Ψ)ΥI =

(
ψ1 + ψµγµ +

1

2!
ψµνγ[µν] +

1

3!
ψµνργ[µνρ] +

1

4!
ψµνρσγ[µνρσ]

)

ΥI

(8.8)

Apparently, the fermions transform as p-form integer spin representation of SO(4)′, and

on the lattice, they are naturally associated with the p-cells, sites, links, faces, cubes,

and hypercubes.
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The equivalence between the geometric p-form fermions and staggered fermions in

ungauged lattice theories is well-know. (The gauging slightly complicates things, we will

not go into this detail.) The p-form fermions can be mapped onto a lattice with half

the spacing as follows: Let eµ, µ = 1, . . . , 4 denote the four dimensional unit vectors, i.e.,

(eµ)ν = δµν . The mapping takes site, link, face, 3-cell and 4-cell fermions into (0, 0, 0, 0),

eµ, eµ + eν , µ 6= ν, etc. That is, the fermions are mapped onto the sixteen corners of a

hypercube. The lattice periodicity is 2eµ in each direction, twice the lattice spacing, as it

is always the case with staggered fermions. Each site carries two Grassmann valued fields,

one barred and one unbarred.

8.2 Reduced staggered fermions as twisted real representation fermions

If there are Nf massless Majorana fermions in a real representation of the gauge group

such as adjoint, then the flavor symmetry of the theory is SU(Nf )flavor. For example, for

QCD with four adjoint fermions [QCD(adj)], the (classical) symmetries of the theory are

GQCD(adj) = [SU(2)L × SU(2)R]Lorentz × [SU(4)]flavor × U(1)A (8.9)

Note that apart from the anomalous U(1)A factor, this is also the spacetime and flavor

symmetry of the N = 4 SYM, where flavor symmetry is called an R-symmetry:

GNf =4 QCD(adj) = GN=4 SYM (8.10)

up to (unimportant) discrete symmetries. Consequently, (and not surprisingly), the re-

duced staggered fermions realization of the QCD(adj) is intimately related to the famous

twist i) of N = 4 SYM [28, 52, 53]. This twist is also the one which arises naturally in the

supersymmetric orbifold lattice [43].

The fermionic matter content of QCD(adj) would be conveniently described by either

a Weyl spinor or equivalently, a Majorana spinor:

ΨMaj.
I =

(
ψα

ψα̇

)

I

(8.11)

which fills in

ψα,I ∼ (2,1,4), ψα̇,I ∼ (1,2, 4̄) (8.12)

representation. The twisting procedure is same as before, where SU(4)flavor replaces the

diagonal SU(4)V of the previous section. The final expression is,

(ΨM)ΥI =
(
λ1 + ψµγµ + ξµνγ[µν] + ξµνργ[µνρ] + ψµνρσγ[µνρσ]

)
ΥI

(8.13)

where the same notation as in the N = 4 SYM theory is used to ease the comparison.

One can map the geometric p-form fermions (which come without unbarred fields) into

the reduced staggered fermions as in the previous section. Note that reduced staggered

fermions has half as much degree of freedom on the lattice relative to the Kogut-Susskind

staggered fermions. This is simply, in the continuum, it corresponds to four flavors of Weyl
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(or Majorana) spinors as opposed to the four flavors of Dirac spinors. (Compare eq. (8.8)

and eq. (8.13).)

The cubic supersymmetric orbifold lattices are natural realization of p-form Dirac-

Kähler fermions and so is the geometric formulation. See for example, [11, 20]. During the

writing of [28], it was not fully clear to me what the relation was between these two and

the work of Sugino [25], who used reduced staggered fermions in his constructions. The

above symmetry arguments also clarify this point. Indeed, ref. [30, 31] recently constructed

a mapping between these formulations at a finite lattice spacing.

9 Discussion

In even space-time dimensions, the deformed matrix models provide an alternative non-

perturbative regularization for extended supersymmetric gauge theories, such as N = 4

SYM in d = 4 and N = (2, 2) SYM in d = 2 [6]. These constructions are different from

supersymmetric (orbifold) lattices [11], and in particular, the β-flux deformation cannot be

used to fully regularize odd dimensional target theories in a Euclidean setting. However,

the matrix model regularization also works for a curved space S2, which cannot be obtained

via orbifold projections.

Our work also provides a newer interpretation for the link approach [39, 40] to lattice

supersymmetry, by benefitting from ref. [32]. First, we classified the link approach lattices

as link(1) [or orbifold(1)] and link(2) [or orbifold(2)]. The first class preserves a (scalar)

subset of supersymmetry and the latter preserves none. Despite being non-supersymmetric

theories at the cut-off, the link(2)/orbifold(2) class is quite intriguing. They have much

larger point group symmetry Gpoint relative to the supersymmetry preserving formulations.

In some sense, supersymmetry in the former is traded with the large discrete chiral and

discrete space-time symmetry Gpoint realized in Diag(SO(d)Lorentz ×SO(d)R) in the latter.

In the classical continuum limit of the link(2) type lattices, one obtains full extended

supersymmetry. Whether this may be achieved in full quantum theory is not clear yet. In

particular, there are supersymmetry violating relevant operators, such as mass operators

for scalars (which is forbidden in supersymmetric lattices), and it is important to check

that higher dimensional operators do not induce them radiatively.

We also demonstrated an equivalence. The supersymmetric deformed matrix models

with Q = few produce a supersymmetric lattice gauge theory, both with a commutative

and non-commutative continuum limit. At finite lattice spacing, the non-commutative

lattice theories have identical actions with the supersymmetric (orbifold) lattices, modulo

the substitution of the ⋆-product with the ordinary product of fields. Both formulations

respect the same set of supersymmetries. The link(2) formulations can also be obtained

from deformed matrix models. The corresponding matrix models are new Q = 0 (non-

supersymmetric) β flux deformations of supersymmetric matrix models. This equivalence

also confirms that the is no exact supersymmetry associated with link(2) constructions.

There are also few other topics that we either rephrased existing results in literature,

or we were unable to say much. One is the generality of the concept of twisting. This

is a useful notion in QCD via the use of staggered fermions, in (non-topological) physi-
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cal supersymmetric theories, in lattice gauge theory, and in topological supersymmetric

field theories. One direction that can perhaps be improved significantly is the physical

interpretation of the N = 1
4 SYM theory on R

4, and its lower dimensional counterparts.
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